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Overview

1. A crash course on quantum information

2. Brief intro to unambiguous discrimination (UD) and
minimum error (ME) discrimination between known states

3. Generalizations, experiment
4. Application I: the B’92 protocol
5. Discrimination of unknown states

6. Connection with UD of two known mixed states: systematic
approach

7. Application II: a modified B’92 protocol
8. Summary and outlook



Quantum Information (pico 1ntro)

Some basic 1deas

1. The representation

2. The processing

and

3. The readout (measurement)

of information by quantum mechanical means



1. Representation: by state of quantum
system

Simplest system: Qubit
- carrier of quantum information unit

- quantum analogue of classical bit (cbit) which can be
cither

0orl
- qubit 1s any 2-state quantum system
- states are labeled |0> and |1>
- { 0>, |1>} form orthonormal basis

Examples
- photon polarization
- electron spin (ESR)
- nuclear spin (NMR)

- two-level atoms




Difference between cbit and qubait

m Cbit: can be either O or 1 ONLY
Qubit: can exist in superposition state
ly> = al|0>+p|1>

|w> legit qubit state with no classical analogue
with

af? + B =1

- Qbit Parametrization

- Can be represented as a point on unit sphere
BLOCH SPHERE




The Bloch sphere




General n-qubit states

0>(0>...|0>0> © |00...00> © |0>
0>|0>...10>]1> © |00...01> © |1>
0>[0>...|1>0> © |00...10> © |[2>

[1>[1>..|1>|1>© |11...11> © |2"-1>

o {|x>;x=0,...,2"-1} where [x> 1s binary number such that
0 < x < 28-1 form a basis
* |y>=2Xc, |x> general n-qubit state

* In general: \(y> can not be factorized into products of single
qubit states

© ENTANGLEMENT



Resources for QI/QC

* Nonclassical features of qubits
©

resources for quantum information and quantum
computing

* Nonclassical features (resources)

- Superposition © parallel computing
- Phase © no classical analogue
- ENTANGLEMENT © nonclassical correlations




2. Processing of QI/QC

* In QM two kinds of transformations are possible:
1. Unitary © deterministic, reversible

2. Measurements © nondeterministic, nonunitary,
nonreversible

* Obviously, we want 1. for controllable processing ©

Quantum gates @ Unitary transformations (on one or
more qubits)

e Consequence: quantum gates must be reversible, 1f
we know output, we know mput (NOT ALWAYS
TRUE FOR CLASSICAL GATES)



3. The read-out

* Processed information # final state of system
* Reading out the info # determining final state

e Measurement # determines actual state from
among possible states

STATE DISCRIMINATION



Quantum mnformation protocols

 We have all the ingredients
* Putting them together gives QI protocols
« This means putting
Resources @© entangled qubits
Quantum gates @ unitary transformations
Measurements @ nonunitary transformations
And classical communication (CC)

Together to accomplish a task gives a QI protocol



Examples of quantum protocols

Teleportation

Quantum cryptography

- quantum key distribution (QKD)
- authentication, fingerprinting
Quantum secret sharing

Quantum computing
- software: quantum algorithms
- hardware: implementations



State discrimination: Important
primitive in quantum information

s Carrier of information <» quantum system

s Information < state of quantum system:
— read-out after processing

s Problem: state is not an observable
Solution: output from set of known states

= Encoding into non-orthogonal states:
state discrimination (e.g. QKD)



SD basics

m Set of known states {|y;>,|v,>, ...}
= Prior probabilities {n,, n,, ...}
m g=probability of failing to identify |y.>

s Find optimum measurement that minimizes
average failure probability

Q=miq; T My -+
m Several strategies — very different optimal
measurements (UD, ME, ...)

s Optimal measurement often generalized
measurement (POVM)



Basic strategies: Minimum error

10)

discrimination
Dl
R2Y;
g} )
PVM
lv,) Pe=1/2{1-[1-n;(1-1;)c0s’0]"*}

=1/2(1-|ny p1r — M2 P2



Unambiguous Discrimination 1

15t von Neumann

Q, =n,+(1- m,) cos*(20)
=C+ (1-CY,

2y



Unambiguous Discrimination 2

10)

Dl

)

°

2

2nd yon Neumann

Q, = 1-n,+ n, cos?(20)
=1-(1-C)n,

For n,=1-n, =%
Q,= Q,="2tV1c0s%(20)

B92’s flip-flop detection
Q>50%



Unambiguous Discrimination 3

POVM

Q; =2 [n, (1 -n,) cos?(20)]'?

lw))

Q,= c0s(20) can be <%
D)

|w,)



Comparison of UD failure
probabilities
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Generalizations, experiments

Discrimination of N states: {1}, ..., {N}
PRA 64, 022311 (2001) (N=3)

Set discrimination: {1, ....m} {m+1,...,N}
ME: PRA 65, 050305(R) (2002); UD: PRA 66, 032315 (2002) (N=3)

Spec: Filtering, m=1: {1}, {2, ..., N}
PRL 90, 257901 (2003)

Linear optical implementation of a POVM
JMO 47, 487 (2000)

Experiment for N = 3: Steinberg, Mohseni, JB

PRL 93, 200403 (2004)



Implementation of POVM

s POVM = Unitary entanglement of
system and ancilla

an

= von Neumann measurement on
larger system



Optical implementation based on
Neumark’s theorem

Experiment

Theory



Three non-orthogonal states

w,) =

(273
0
1//3

” ‘W2>:

0 )
1/~/3

V273

’ ‘W3>:

(0 )
~1/+3
V273

Projective measurements can distinguish these states

with certainty less than 1/3 of the time.
(No more than one member of an orthonormal basis is orthogonal

to two of the above states, so only one pair may be ruled out.)
But a unitary transformation in a 4-dimensional Hilbert space produces:

|W1 >out

1//3
0
0

\V2/3

’ |l//2>out

(0

N2/3

0
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Normalized Intensity
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Application I: QKD via two non-
orthogonal states (B’92)

m Alice prepares a qubit in one of two non-orthogonal states
> = (0> # <07 y,> = (0> + [1>)\2 # <17
and sends it to Bob

= Bob applies optimum USD to determine what state the qubit he
received was in. His success rate will be

1- <y, [y,>=1-1/32=0.29

m  Bob tells Alice over a public classical channel whether succeeded or
failed but not the result. They keep the bit if Bob succeeded

m A and B repeat the above steps a large number of times and keep the
bits when Bob succeeds, establishing a shared key



Eavesdropping




Eavesdropping

m  An eavesdropper, Eve, in the middle can apply USD and succeeds 29% of the
time. In the remaining 71% she has to guess what state to send Bob. She
guesses randomly, so half the time she guesses right, half the time wrong. She
will introduce an error rate

72X T1% = 35.5%

= A and B modify their strategy. After establishing a shared sequence they
publicly compare a part of it. If they find an error rate of 35.5% they know
there 1s Eve and simply discard the string and start all over

m  Better: Eve can apply minimum error strategy. Her error rate is then
[1-1/~N2 ]2 = 14.6%

m Still, comparing part of their shared string, A and B can detect Eve

B O forBobUSD is optimum strategy, for Eve ME is optimum strategy



A programmable discriminator for unknown
quantum states [PRL 94, 160501 (2005)]

Ad hoc approach:
unknown states are given as program

A

M>=hy,> .
> 7>=lv, A and B program registers
[W,> E [7>=|y,>

7> —= [2>=7>

C data register



How the discriminator works

Inputs (with 1, n, prior probabilities)

V> = W= alvo>slWi>c
or

Vo> = |y > AW W>c

All we have is symmetry properties — POVMs:
I = ¢ I\.®Apc 11, = ¢, [g®A, ¢ I+ 11, + 1) = I5¢

<P[IL ¥ >=p;; <) I [¥Y>=q,; <V |IL[Y>=0;
pitq,=1



Success probabilities and
measurement operators

Py="n,

P2 11 n, 0.5 ///
c;=% (2 —(my/m;)1?) N \/
;=% (2 — (M, )12 - P

PPOVM

=% (1= (1-n]1"?) .
all P’s 1in units of 0 0.2 o.4nlo.6 0.8 1

(1- [<¥|¥,>]%)



Averaging the results

Ppoym = 73 (1 - [, (1-m;).

® (1 - |<¥,|V¥,>

Pap=%®@%®Y% =1/6

— 1 1
Poypm = 74 Nyin = 78

1/2 )

?)



A quantum circuit for the programmable SD
[JB, M. Orszag, JOSA B 24, 384 (2007)]

[¥1) D

[42) P

[4) T H —
0) X H
0y — H .

Figure 1: A simplified quantum circuit for the full implementation of the pro-
grammable state discriminator. If, at the output, the reading in the program
qubit 1, data qubit 3 and control bit 5 is |010)135, the data state is [i9). If, at
the output, the reading in the program qubit 2, data qubit 4 and control bit 5
is |011)245, the data state is [¢)1). The average probability of either alternative
is 1/8.



Programmable discrimination as
discrimination of mixed states

m Inputs for programmable discriminators:
> = [y > Ay >plwo>c ¥ py = {[V>< |}, #5550 %21
P> = [y >alWo>plWo>c ¥ py={[F ><W,[},, #® 21,8 % Spc
= p, and p, with n, and n, priors
= S, projector to symmetric subspace of 1,j; I;: identity for qubit I

s  Unknown pure states <» known mixed states



Does 1t help?

Can two mixed states be discriminated
unambiguously?

Yes. But how?
A little technicality

Support: subspace spanned by nonzero
eigenvectors

Kernel: subspace orthogonal to support

Measurement in kernel of one i1dentifies the other
unambiguously



[.ower bound on the failure
probability

s Geometric mean > arithmetic mean

Q=nq; T Nyq, = 2[N M, Tr(p,11,) Tr(p,11y) 12
= Using CS inequality

Tr(ATA)Tr(BTB) = [Tr(ATB)|?
= 1n Q gives

Q = 2[nM,]"2 Trlp, " I1yp, '
= 2[111112]1/2 TT|P11/2(1'H1'H2) P21/2|

=2[nm,]"* Trlp,"*p,'?|



[L.ower bound

Qprovm 2 2[MiMa]"*F(py, po) (%)

F(py, p,)=Trlp,"? p,'?| fidelity

(*) established as lower bound
Rudolph et al., PRA 68, 010301(R) (2003)

(*) saturated for rank 1 vs. rank N and in most rank 2 vs. rank N cases

Conjecture: (*) range of validity decreases rapidly with increasing rank
PRA 71(RC), 050301 (2005)



An 1mnequality for ME and UD

[PRA 70, 022302 (2004)]

n Py ="A(1-]| nyp; —Myp, [) for ME

n Qpoym = 2[111112]”2F(pp p,) tor UD

Py <72 Qpoym



Comparison of UD and ME
programmable discriminators

Qfand Py vs. 1, 1

Probability
o o o
= o o

o
DN

o




Application II: QKD via
unknown states

A modified B’92 protocol: communicating via patterns
Pattern 1: third qubit matches first

> = |y > lwo>ply>c © <07
Pattern 2: third qubit matches second

> = W >alwo>ply > © <17
Advantage:
no need for shared reference frame
robust against unitary errors
Eve’s options are severely limited



Comparison of B’92 to QKD via

patterns
B’92 QKD via
Patterns
Pgqp, (UD) 0.29 (0.25) 1/6 (1/8)
Pgye (UD) 0.29 (0.25) 1/6 (1/8)
P_... by Eve UD |0.35 (0.38) 0.42 (0.44)
Eve (M E) 0.85 0.65
by Eve ME |0.15 0.35

CI’I‘OI’




Summary

s Effect of POVM demonstrated (filtering and full UD)

= UD of mixed states

s Unknown pure states # known mixed states

s Programmable quantum state discriminators (UD and ME)
s Applications:

probabilistic algorithms

QKD via patterns

Operator discrimination (entanglement does not always help)
entanglement concentration, purification, distillation, ...

Review

LNP 649: Quantum States Estimation, 417-465
(Springer, 2004)



Quantum computing

s Quantum algorithm
- preparation of input state (initialization)
- processing: perform unitaries (gates)
- to yield desired output(s)
- measure to obtain final answer

s Execution of quantum algorithm by actual
implementation (Quantum Computer)

s Problem: only a handful of quantum algorithms



Application: A probabilistic quantum algorithm for

the discrimination between sets of Boolean functions
[PRL 90, 257901 (2003); PRA 72, 012302 (2005)]

s f(x) Boolean if f(x) =0 or 1 for {x|0,1,...,2™1}

s Balanced:
Biased:

= For classical discrimination: N/2+m,+1
realizations are necessary (generalization of
Deutsch-Jozsa algorithm)



Application
f~-CNOT (or Deutsch) mapping:
xX>y> — [x>|y+i(x)>

takes [x>(|0>-|1>)—(-1)™|x>(|0>-[1>)

2 0 to N2 10 o Ny (DI x>— { v}

{|ve>} for balanced 1(x) 1s not orthogonal to {|v>}
for biased f(x)

Filtering discriminates in single step



A little aside: UD of two mixed
states

m  Two mixed states of arbitrary rank:
p, and p, with n, and n, priors
= POVM for UD:
IT,+ I+ I1,=I
= UD condition:

I, py= 11, p,=0



UD of two mixed states

m Probability of successfully detecting the individual states

p=Tr(I,p,) p,=Tr(IL,p,)

m Probability of failing to detect the individual states (NOT error!)

q,=Tr(ILyp,) q,=Tr(l1yp,)

»  Want to minimize average failure probability

Q=mn,q; * N9,



Equalities not just bounds:
subspace discrimination

If two mixed states are of the spectral form
p; = X;1|r><r;| and p, = X s;s;><s;| with <r;|s;>=0;; cos 6
spectral representation coincides with Jordan basis

Spec.: subspace discrimination r=1/d, s=1/d,
[PRA 73, 032107 (2006)]
In Jordan basis: discrimination of 2N Rank 1 subspaces
© N separate pure state discriminations
Optimal failure probability:
Q=2 Q

where Q, 1s the failure probability for subspace 1



Pick up where we left off: discrimination of
unknown states [PRA 73, 062334 (2006)]

Inputs for programmable discriminators in Jordan form
1> = W= oW >plwy>c # py =Y S,5® 2 1= 1/6 [Sspc + [8,><g)[Hg,><g,l]
o> = W=, [Wo>pl Wy~ # Py =2 1,® 5 Sp = 1/6 [Sypc + |hy><h,[+]h,><h, ]
Two mixed states of rank 6 each:
p, and p, with n, and n , priors
S \gc: projector to fully symmetric subspace of 3 qubits A,B,C (4 dim)

<g/lg> = <hh>=0; <glh>=-"0,



Bonus: Minimum error
discrimination

s Helstrom bound

Pg = % (I'H N2 P2 -M1 Py ||)

m For programmable discriminators

1
PE =N i (1 N (oS )
2 e = Mo A= T




Boundaries 1n the parameter
space

Dotted line: s,(1) o - ///
Short dashed line: s,(1) 0.8l o /
Medium dashed line: s;(1) e V% //
Long dashed line: s,(1) 0.6l / Vs /)

S / / / K /
Below s,(r) and above s,(r) 0.4 P
fidelity bound can not be reached; / / P

0.2 / P g

Between s,(r) and s,(r), Z et

and between s,(r) and s,(1)
fidelity bound can be reached for some n;;

Between s,(r) and s,(1) fidelity bound
can always be reached.



A simple example where (*)
cannot always be saturated

Py =X oy Ll < s
r,=r r,=l-r

Py = Z{i=1,2}si|si><si| 1
$;=S $,=1-s
<r;|s;>=0,;;/2"
0<r,s<l1 05 |

in shaded area of r,s plane
fidelity bound can be
reached for some values of

N, and n,, but not outside — i
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