REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

IRFAN SIDDIQI

YALE UNIVERSITY

R. Vijay P. Hyafil

E. Boaknin

M. Metcalfe

F. Pierre

L. Frunzio C.M. Wilson

C. Rigetti

J. Gambetta

Quantum Nanoelectronics Laboratory University of California, Berkeley

UC BERKELEY

- K. Mai O. Naaman (NIST) K.G. Ray Z. Zibrat S. Onishi M. Sarovar D. Slichter
- K.Eid (Penn State) A. Zettl J. Clarke J. Long K.B. Whaley

R.J. Schoelkopf S.M. Girvin D.E. Prober M.H. Devoret

V. Manucharyan

ISCP – Islamabad March 26-30 2007

CLASSICAL vs. QUANTUM INFORMATION

classical equilibrium states Π OR 1 0

|<mark>0> <u>AND</u> |1></mark>

QUANTUM COHERENT MACHINES: MIRACLE or MIRAGE?

ENTANGLE 10⁵ QUANTUM OBJECTS → TECHNOLOGICALLY FEASIBLE ? FUNDAMENTALLY ALLOWED ?

QUANTUM REALITY ?

"There is no quantum world. There is only an abstract physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature."

Niels Bohr in the early 1920s. (Niels Bohr Archive.)

- N. Bohr

QUANTUM MEASUREMENT PARADOX

Can we fully control the measurement process?

... if yes, how "macroscopic" can we make the meter ?

CHOSING AN "ATOM": QUANTUM BITS

HOW CAN WE MAKE A CIRCUIT ATOM-LIKE?

Electrical Circuit

"Artificial Atom"

|1>

|0>

88

HOW CAN A SUPERCONDUCTING CIRCUIT BECOME QUANTUM-MECHANICAL AT THE LEVEL OF CURRENTS AND VOLTAGES?

SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT

MICROFABRICATION \implies L ~ 3nH, C ~ 10pF, $\omega_r/2\pi$ ~ 1GHz

LC OSCILLATOR AS A QUANTUM CIRCUIT

LC OSCILLATOR AS A QUANTUM CIRCUIT

LC OSCILLATOR AS A QUANTUM CIRCUIT

CANNOT STEER THE SYSTEM TO AN ARBITRARY STATE

THE JOSEPHSON TUNNEL JUNCTION: NON-LINEARITY AT ITS FINEST!

$$I(\delta) = I_0 \sin(\delta)$$

(NON-LINEAR INDUCTOR)

$$U(\delta) = -\frac{h}{2e}I_0\cos(\delta)$$

VARY LEVEL SPACING USING CHARGE & FLUX

SPLIT COOPER-PAIR BOX: TUNABLE 'ATOM'

DISPERSIVE QUANTUM MEASUREMENT

NON-LINEAR INDUCTIVE READOUT: QUANTRONIUM

THE NON-LINEAR JOSEPHSON OSCILLATOR

$$\begin{cases} I(\delta) = I_0 \sin(\delta) \\ V(t) = \frac{h}{2e} \frac{d}{dt}(\delta) \end{cases}$$

$$U(\delta) = -\frac{h}{2e}I_0\cos(\delta)$$

<u>Nonlinear Oscillator</u> $L_{J} = \frac{V(t)}{dI/dt} = \frac{h}{2e} \frac{1}{I_{0}} \frac{1}{\cos(\delta)}$ $\omega_{P} = \frac{1}{\sqrt{L_{J}C}}$

THE JOSEPHSON ELECTRICAL PENDULUM: Non-linearity with <u>minimal friction</u>

PENDULUM CLOCK (Galileo, ca. 1600)

$$L_{J} \propto I_{0}^{-1} \leftrightarrow l$$
$$C \leftrightarrow g^{-1}$$
$$\omega_{p} \leftrightarrow \omega_{0}$$

 $\delta \leftrightarrow \theta$

- ω_p/2π ~ 1-10 GHz
- Non-linear & Non-dissipative
- Quantum Regime

 $(h\omega_P >> k_B T)$

PERIODIC DRIVE

$$I(t) = i_{RF} \sin(\Omega t)$$

$$U(\delta) = -\frac{h}{2e}I_0 \left(1 - \frac{\delta^2}{2} + \frac{\delta^4}{12} - \dots\right)$$

linear inductance non-linear inductance

two dynamical (Floquet) states

•
$$\delta_{max} \le 0.25$$

IS et al., PRL 94 027005 (2005)

JOSEPHSON BIFURCATION AMPLIFIER

JBA: INPUT COUPLES TO In

- no on-chip dissipation
- only fluctuations from R (minimal backaction)

IS et al., PRL 93 207002 (2004)

COMBINING HIGH SENSITIVITY & SPEED

NATURE'S BIFURCATION AMPLIFIER

VOLUME 84, NUMBER 22

PHYSICAL REVIEW LETTERS

29 May 2000

Essential Nonlinearities in Hearing

V. M. Eguíluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), E-07071 Palma de Mallorca, Spain Laboratory of Mathematical Physics, The Rockefeller University, 1230 York Avenue, New York, New York 10021 Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021 Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021 (Received 23 September 1999)

MICROWAVE QUANTUM EAR

• nm • mK • GHz

ELECTRON BEAM LITHOGRAPHY

IMAGING: < 1 nm WRITING: ~ 10 nm – 10 cm

LIQUID HELIUM FREE COOLING in 24 hrs!

ISOLATED POWER, ETC...

Filters, Filters, and more Filters...

RF BIASED JUNCTION: PHASE DIAGRAM

QUANTRONIUM with **BIFURCATION** READOUT

SINGLE MOLECULE MAGNET QUBIT

CNT Weak Links (K. Ray)

- $Cr_7Ni (S=1/2)$ [(cyclen)₁₂Ni₁₃Cr₆(CN)₃₆]⁸⁺ (S = 22) [Mn₁₉O₈(N₃)₈(HL)₁₂(MeCN)₆]²⁺ (S=83/2)
- measure spin state in 10-100 ns
- strong magnetic coupling

Metal Weak Links (K. Eid)

DRIVEN PENDULUM IN THE QUANTUM REGIME

THE UNRUH EFFECT

HEAT WITHOUT FRICTION: THE DYNAMIC CASIMIR EFFECT

"Shaking Light from the Void"

Paul Davies Nature, News & Views, **382** 761, 1996

HEAT WITHOUT FRICTION: THE DYNAMIC CASIMIR EFFECT

$$T = \frac{h\Omega^2 \Delta X}{k_B c} \frac{\Delta X \,\omega_r}{c} F$$

Lambrecht, Jaekel, and Reynaud PRL 77, 615 (1996)

$$\Delta X \rightarrow \Delta L_{eff}$$

QUANTUM ACTIVATION

SCHRÖDINGER'S CATS and KITTENS

MACROSCOPIC QUANTUM ERASURE

- prepare atom in superposition
- send photons, entangle meter with atom
- photons arrive at classical readout
- detrectpplsleeb(acsutal atobit/reateout)
- photons arrive at meter
- atom recovers original superposition

|0> + |1> $|0 \phi = 0 > + |1 \phi = \pi >$ |0 \/\/→> + |1 /\//→> |0-₩> + |1-₩> $|0\phi=0\rangle + |1\phi=\pi\rangle$ + 1>

LIMITS OF SUPERPOSITION ?

• JBA states ~ 100 h ("fat" cat)

CONCLUSIONS

SUPERCONDUCTING QUBIT READOUT

DISPERSIVE: NO ENERGY LEFT BEHIND FAST: MEASURE 30ns, RECORD 100ns MINIMAL DEAD TIME: REPETITION RATE SET BY T₁ NON-INVASIVE: CAN TURN READOUT OFF

PHYSICS QUESTIONS

DECOHERENCE IN MANY-BODY QUANTUM SYSTEMS COHERENCE TIMES IN SINGLE MOLECULES/NANOTUBES AMPLIFY QUANTUM INFORMATION? FUNDAMENTAL LIMITS TO QUANTUM COMPLEXITY? THE QUANTUM PENDULUM → DYNAMICAL CASIMIR EFFECT

DRIVEN PENDULUM: ACTIVATION @ ALL T!

- Non-equilibrium quantum system
- Drive: Virtual vacuum fluctuations
 → real photons → switching

k_BT<<ħω: QUANTUM ACTIVATION

• equilibrium case \rightarrow only relaxation

DC CURRENT BIAS: Macroscopic Quantum Tunneling (MQT)

CAN COOL JUNCTION & ENVIRONMENT

cool R to 25-35 mK; >1 GHz RF bandwidth

$$T^* = \frac{\mathrm{h}\omega_p}{7.2k} = 5 - 15mK$$

QUANTUM ACTIVATION VS. MQT

CONCLUSIONS

QUANTUM STATE READOUT

- DISPERSIVE: NO ENERGY LEFT BEHIND
- FAST: MEASURE 30ns, RECORD 100ns, NO DEAD TIME
- NON-INVASIVE: CAN TURN READOUT OFF

OBSERVATION OF THE DYNAMIC CASIMIR EFFECT

PERSPECTIVES

- COHERENCE TIMES IN SINGLE MOLECULES/NANOTUBES
- DECOHERENCE IN MANY-BODY QUANTUM SYSTEMS
- FUNDAMENTAL LIMITS TO QUANTUM COMPLEXITY?