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Introduction and Motivation

• Externally launched electromagnetic waves (EM) seem to be the
best choice for microwave plasma heating and non-inductive
current drive in in high-density core plasmas of spherical toka-
maks due to possibility of off-axis launching and highly local-
ized heating.
• Bernstein waves in spherical tokamaks owes to the electron cy-

clotron (EC) wave mode conversion which has attracted growing
attention due to its potential in heating the plasma.
• The usual analysis by ray tracing method is not applicable in a

plasma with high density or low magnetic field becausethe pres-
ence of cutoff layer may prevent the waves from penetrating
into the central part from the low field side.
• In this case, full wave analysis of EBW (Electron Bernstein

Wave) is required waves is required for evaluating the absorption
profile and optimizing the wave launching conditions.
• In case of parallel motion iwith no FLR effects, beach heating

at EC resonance takes place and full wave analysis provides
sufficiently accurate method to evaluate the power absorption.
• In the present analysis, the full wave analysis of EBW using

integral formulation and beach cyclotron heating at EC res-
onance in a magnetized plasma are discussed.

Full Wave Analysis

• Solves Maxwell’s equation as a boundary-value problem
no simplifying assumptions, non-local fields, fixed ω

– E: wave electric field
– ↔ϵ : dielectric tensor

∇ × ∇ × E =
ω2

c2
↔ϵ · E + iωµ0 jext

• Merit of full wave analysis

– Wave length longer than the scale length of medium
– Propagation over an evanescent layer
– Coupling to antenna
– Formation of standing wave

• Method of full wave analysis

– Fourier analysis: algebraic equation
– Discrete differential equation: finite diff./element method
– Mixture of above two methods

Description of FLR Effects in Full Waves Analyses

• Fast wave approximation:

– Evaluate wave length of fast waves using cold plasma approx.
– Only for fast wave and propagating waves, no standing waves

• Differential operator: TORIC code (Brambilla, IPP)

– Expand with respect to k⊥ρ, and replace it with i ρ∂/∂r⊥
– Limited to k⊥ρ ≲ 1, and up to the second order of k⊥ρ

• Fourier transform: AORSA code (Jaeger, ORNL)

– FT in the direction of homogeneity, and convolution integral
– All Fourier components are coupled, requires large computa-

tional resources

• Integral operator: Sauter (NF, 1992), TASK/W1 (Fukuyama)

– Integral form of dielectric tensor:
∫
ϵ(x − x′) · E(x′)dx′

– Localized in space, less computational resources required.

Integral Formulation of Wave-Particle Interaction

• Particle orbit: r = r′ + ∆r(u, r, t − t′); u = u′ + ∆u(u, r, t − t′)
• Perturbed distribution from Vlasov equation:

f (r, u, t) = − q
m

∫ t

−∞
dt′

[
E(r′) + u′ × B(r′)

]
· ∂ f0(r′, u′)
∂u′

e − iωt′

• Induced current:

j(r) =
∫

du qu f (r, u, t) e iωt =

∫
dr′↔σ (r − r′, t − t′) · E(r′)

• The integral form of the conductivity tensor is defined by

↔σ (r, r′, t−t′) = − q
m

∫ t

−∞
dt′
∂ f0(r′, u′)
∂u′

·
[
u +

1
iω
u · u′ × ∇×

] ∣∣∣∣ r′ = r − ∆r(u, r, t − t′)
u′ = u − ∆u(u, r, t − t′)

• General form of dielectric tensor: ↔ϵ =↔I + i
ωϵ0
↔σ

∇×∇×E(r, ω)−ω
2

c2

∫
V

dr′↔ϵ (r, r′;ω)·E(r′, ω)− iωµ0Jext(r, ω) = 0

Variable Transformations

• Transformation of Integral variables

– Transformation from the velocity space
variables (v⊥, θg) to the particle posi-
tion x′ and guiding center position x0.

– Jacobian: J =
∂(v⊥, θg)
∂(x′, x0)

= − ω2
c

v⊥ sinωcτ
.

x'

t'

t

x
0

x

θg
v

– Express v⊥ and θg by x′ and x0, e.g.,

v⊥ sin(ωcτ + θg) =
ωc

v⊥

x − x′

2
1

tan 1
2ωcτ

+
ωc

v⊥

(
x + x′

2
− x0

)
tan

1
2
ωcτ

• Integration over τ: Fourier expansion with cyclotron motion

• Integration over v∥: Plasma dispersion function

• Conductivity tensor: (for cyclotron harmonics)

↔σ (x, x′, χ0, ζ0) = −in0
q2

m

∑
ℓ

∫
dx0
↔
H ℓ(x − x0, x′ − x0; x0, χ0, ζ0)

1D Kinetic FW Analysis of O-X-B Mode Conversion
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R0 = 0.22 m
a = 0.15 m
B0 = 0.08 T

ne(0) = 1 × 1017 m−3

f = 2.45 GHz
k∥ = 32

Te(0) = 500 eV

Wave number dependence of
antenna load resistance

Parallel Wave Number Dependence
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Formulation for Cyclotron Resonance

• Propagation along the magnetic field lines (mirror motion)
• Non-uniform magnetic field; Bz(z) = B0

(
1 + z

L
)

• Basic equation
1
β2
∇ × ∇ × E(z) −

∫ ∞
−∞

dz′↔ϵ (z − z′)E(z′) = 0

• Dielctric tensor

↔ϵ (z, z′) = δ(z−z′)
↔
I + i

ω2
p0
ω2

 (χ+ + χ−/2) − i (χ+ − χ−/2) 0
i (χ+ − χ−/2) (χ+ + χ−/2) 0

0 0 χ0


χ± =

(1 + κz)3/2(1 + κz′)3/2

(1 + κ(z + z′)/2)2 U0(ξ±); κ =
vth
ωL

χ0 =
(1 + κz)(1 + κz′)
(1 + κ(z + z′)/2)

[
ξU−2(ξ) − κ2

2(1 + κ(z + z′)/2)2

]

ξ =
ω(z − z′)
vth

, ξ± =
(ω ±Ω)(z − z′)

vth
, Ω =

qB0
m

(
1 +

z + z′

2L

)
• Kernel function

Un(ξ) =
1√
2π

∫ ∞
0
τn−1dτ exp

[
−1

2
ξ2

τ2
+ i τ

]

Linearly Polarized Waves

HFS Excitation Disp. & Abs.
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Circularly Polarized Waves (HFS & LFS)

• Dependence on density: β = 0.01
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– HFS: Good absorption for high density

– LFS: Very weak absorption, no tunneling

Summary

• We have presented the kinetic full wave analysis of EC waves
for O-X-B mode conversion following the particle orbit theory for
1D hot plasma.

• The analysis uses the integral form of dielectric tensor and
describes the mode conversion to the electron Bernstein wave
near the upper hybrid resonance (UHR) layer and absorption
near the EC resonance.

• For parallel motion, magnetic beach heating near the EC res-
onance was studied and the power absorption profile was ob-
tained.

• 2D kinetic full wave analysis of O-X-B mode conversion is in
progress. Preliminary results of the analysis are shown.


