

How to do Physics Analysis of LHC Data?

Hafeez Hoorani National Centre for Physics

Outline

- Physics Channels at LHC
- Physics Analysis of LHC data
- Physics Analysis at NCP
- Computing Challenge
- LHC Computing Grid (LCG)
- Analysis Facility at NCP
- How others can join?

Physics Channels

• Higgs Searches:

- $-M_{\rm H}$ < 140 GeV H $\rightarrow \gamma\gamma$
- $-140 < M_{H} < 700 \text{ GeV} (H \rightarrow IIII)$
- $-M_{H} > 500 \text{ GeV} (H \rightarrow IIjj)$
- Studies of CP Violation:
 - $-B^{0} \rightarrow J/\psi K^{0}_{s}$
- Super-symmetry:
 - SUSY Higgs Boson
 - Sparticles (sleptons, squarks, gluinos ...)

Physics Channels

- Excited Quarks
- Leptoquarks
- Monopoles
- Extra-dimensions
- Compositeness
- Standard Model Physics

Standard Model Physics

QCD Studies

- Jet Studies
- $\alpha_{\rm s}$ and its running
- Inclusive b production
- Top Quark Physics
 - Top pair production (σ , m_t, properties of top)
 - Single top (V_{tb} ,...)
- Electroweak Physics (W & Z crosssection, Drell-Yen, PDF, TGC, ...)

List of Analysis packages Required

- Generation Step
 - CMKIN(PYTHIA, TOPREX, CompHEP, HERWIG, ISAJET, AlpGen, MadGraph)
 - http://cmsdoc.cern.ch/cms/PRS/gentools/
- Simulation Step
 - OSCAR (Object Oriented Simulation for CMS Analysis and Reconstruction)
 - <u>http://cmsdoc.cern.ch/oscar/</u>
- Reconstruction Step
 - ORCA (Object Oriented Reconstruction for CMS Analysis)
 - http://cmsdoc.cern.ch/orca/
- Analysis Step
 - ROOT (An Object Oriented Data Analysis Framwork)
 - <u>http://root.cern.ch</u>

List of Analysis packages Required

- Auxiliary Software
 - COBRA (Coherent Object Oriented based for Reconstruction, Analysis and simulation)
 - <u>http://cobra.web.cern.ch/cobra/</u>
 - IGNOMINY
 - <u>http://ignominy.web.cern.ch/ignominy/</u>
 - Geometry (CMS Geometry Project)
 - <u>http://cmsdoc.cern.ch/cms/software/geometry/index.html</u>
 - FAMOS (CMS FAST simulation Package)
 - http://cmsdoc.cern.ch/famos/
 - IGUANACMS (Interactive Graphics for Users ANAlysis)
 - <u>http://iguanacms.web.cern.ch/iguanacms/</u>
 - SCRAM (Software Configuration, Release and Management)
 - <u>http://cmsdoc.cern.ch/Releases/SCRAM/doc/scramhomepage.html</u>

NCP top quark group

- 7 people working on CMS analysis:
 - Hafeez R. Hoorani: Supervisor of CMS Analysis Activities
 - Ijaz Ahmed:
 - M. Irfan :
 - M. Usman:

 - Hamid Ansari:

- (PhD) (Semi-leptonic decays)
- (PhD) (Single top studies)
- (PhD) (Higgs Searches)
- Taimoor Khurshid: (M. Phil)(Semi-leptonic decays)
 - (M. Phil)(Single top)
- Waqas Mahmood: (M. Phil)(Rare Top decays)

Top quark properties

- The heaviest known elementary particle.
- Discovery 1995 at Tevatron
- Pole mass (174 ± 5.1) GeV
- Decay width (1.4 GeV)
- Life time $\sim 10^{-25}$ s
- $t \rightarrow bW ~(\sim 100\%)$
- _ Spin and parity $J^{P}(SM) = 1/2^{+}$
- Weak iso-spin eigenvalue = $I_3 = +1/2$
- tt Production cross-section @ 7 TeV = 830 pb
- In one year at LHC if integrated luminosity is 10 fb⁻¹ number of tt events produced is 8.3 M

Leading ttbar pair production diagrams

Quark annihilation

Associated productions

Topology of the Semi-Leptonic Top Decay Channel

Events depend on W decay modes Leptons plus jets: one W decays to jets(67%) other into leptons (33%)

tt Decay Modes

Decay mode	Branching ratio	eν	μν	τν
tt→W ⁺ W ⁻ bb→bbqqqq	36/81			
tt→W ⁺ Wbb→bbqq'ev	12/81			
tt→W ⁺ Wbb→bbqqʻµν	12/81			
tt→W ⁺ Wbb→bbqq'τν	12/81			
tt→W ⁺ Wbb→eνμνbb	2/81			
tt→W ⁺ Wbb→eντνbb	2/81			
tt→W ⁺ Wbb→μντνbb	2/81			
tt→W+Wbb→evevbb	1/81			
tt→W+Wbb→μνμνbb	1/81			
tt→W+Wbb→τντνbb	1/81			

Major Background Processes

Process	Cross-section		
_	(pb)		
tt(signal)	830		
$b\bar{b} \rightarrow l\nu + jets$	$2.2 imes 10^{-6}$		
$W + jets \rightarrow lv + jets$	7.8×10^{-3}		
$Z + jets \rightarrow l^+l^- + jets$	1.2×10^{-3}		
$WW \rightarrow lv + jets$	17.1		
$ZZ \rightarrow l^+l^- + jets$	3.4		
$WZ \rightarrow lv + jets$	9.2		

Computing Challenge

- CMS Detector has 15 million channels.
- Typical detector occupancy is 10 15%
- Average event size is 1 MB
- Event rate is 100 Hz
- In a given year LHC will run for 10 million seconds

Total Data Size = 10⁶ x 100 x 10⁷ = 1 PB

Computing Challenge

Year	Beam Time (sec/year)	Lumi. cm ⁻² s ⁻¹	RAW Data (MB)	RECO (MB)	AOD (MB)
2007	5 x 10 ⁶	5 x 10 ³²	1.5	0.25	0.05
2008	107	2 x 10 ³³	1.5	0.25	0.05
2009	107	2 x 10 ³³	1.5	0.25	0.05
2010	107	2 x 10 ³⁴	1.5	0.25	0.05

- LCG 1 Service opened September 15, 2003.
- It is common computing facility for all LHC experiments.
- As of May 31, 2005: – Number of Nodes: 148
 – Number of CPUs: 13,268
 – Total Storage: 5 PB (5,000,000 GB)
 LHC will produce 15 PB of data per year.

LHC Computing Grid

- Uses concepts of VO.
- Hierarchical Structure
 Tier 0, Tier 1, ..., Tier 4
- CERN is a Tier 0, all RAW Data from LHC will be stored at CERN.
- Model based on 1/3 (CERN), 2/3 (Outside)
- NCP is LCG Grid Node.

Requirements for LCG Nod For Grid Node requirements are:

- Public Key Infrastructure (PKI) for use with Grid authentication middleware.
- High bandwidth network connectivity
- Grid node hardware elements:

)
II)
)
)

PK-Grid-CA

PK-Grid-CA

- Part of EU-Grid PMA, authorized International Policy Management Authority working under IGF
- Compliant with **RFC-2527**
- Based on Cryptographic toolkit OpenSSL
- Online Certificate Request for User/Host Certificate

PK-Grid-CA

The use of PKI enables

- A secure exchange of digital signatures
- Encrypted documents
- Authentication
- Authorization
- Other functions in open networks where many communication partners are involved

Analysis Facility at NCP

- NCP has a network connectivity of 2Mbps, used for:
 - LCG Node and CMS Data Production
 - Sending/receiving emails and web surfing
- LCG Node, Web and Mail Servers are maintained by NCP staff
- Increased hardware resources recently for the LCG Node

- Linux based PC Cluster, running Scientific Linux 3.0.4
- PC Cluster is based on:
 - CPU 22 P-IV 3.2 GHz
 - Disk 2.66 TB
 - Memory
 - Servers

1 GB each
5 Intel Xeon 3.2 GHz
Dual Processor
Hot pluggable SCSI Drives
Redundant Power Supplies

Analysis Facility at NCP

- Mass Storage: **RAID 5** with hot pluggable SCSI
- Magnetic Tape Storage: 40/80 GB tapes
- Total Storage Capacity: ~ 10 TB
- All user accounts (NIS), files (NFS) and software (CVS) is centralized
- Job scheduling done using open PBS

11111 111 : : **共一共** 11111

NCP Computing Model

- NCP computing model is based on pooling and sharing the resources of other institutes.
- In return providing them Linux training, access to GRID & CERN Software.
- Following are our partners in Pakistan:
 - -PAEC
 - -NUST
 - -COMSATS
- NCP is establishing PK–SNT–GRID.

Computing Resources

INSTITUTE	PCs	Bandwidth (kbps)	FTE
NCP	28	2048	3
NUST	08	1024	8
PINSTECH	14	1024	3
KANUPP	14	Dial Up	4
HMC-III	05	128	3

Accomplishments

- Organization of Grid Technology Workshop in October, 2003 in collaboration with CERN
- Became Regional Centre for CMS Production in August 2003
- Produced 1.38 million events for CMS (~ 280 GB)
- In May 2004, NCP became a fully operational LCG
 Grid Node in Pakistan
- Run CMS Data Production on Grid, more than 7 M CMKIN and 2.1 M OSCAR events have been produced
- NCP is accredited GRID-CA, since 09/2004

- Access to LHC data is open to anybody.
- To become part of this activity requirements are:
 - Group of Physicists
 - Computing Infrastructure
 - Funds for traveling and stay at CERN
 - Authorship of papers
 - No charge for research students
 - Faculty & Ph.D authors contribute towards M&O

- Write proposal to a funding agency.
- Training can be provided by NCP:
 - Data Analysis
 - Computing
 - Workshop such as this is a good opportunity
- NCP will also provide main computing infrastructure:
 - Large data storage
 - Software update.

System Requirements

- **Supported Platforms** CERN Scientific Linux (slc3_ia32_gcc323)
- Others (CERN Red Hat)

Distribution	Arch	Version	Perl-Tk	Installation	Toolchecker	OSCAR Verify	ORCA Verify
<u>Scientific</u> <u>Linux</u> <u>CERN</u>	i386	3.0.x	perl-Tk from distribution	ok	ok	ok	ok
<u>Scientific</u> <u>Linux</u> <u>FERMI</u>	i386	3.0.x	perl-Tk from distribution	ok	ok	ok	ok
<u>CERN</u> <u>RedHat</u>	i386	7.3.x	perl-Tk from distribution	ok	ok	ok	ok

System Requirements

- P-IV PCs are enough
- Can start analysis with couple of PCs
- Storage; minimal-requirement is 1TB
- Good connectivity is required
- At least one machine on live IP

- <u>http://cmsdoc.cern.ch/cms/oo/repos_standalone/download/</u>
- GOAL
 - Provide complete CMS software environment for development and data analysis
 - Desirable properties of experiment software installations
 - No root privilege required
 - Relocatable packages
 - Optional network download
 - Batch mode installable
 - Save able and re-useable setup

Prerequisite for CMS software Installation (XCMSI)

- Included validation procedure
- Concise configuration for less experienced users
- Multiple platform support
- Multiple installation possible
- Suitable packages in the form of RPMs
- PERL version 5.6.0 or higher perl-Tk rpm
- List of all available RPMs and download tags are available on this page, just follow the instructions
- Documentation: <u>http://cmsdoc.cern.ch/cms/oo/repos_standalone/download/doc/xcmsi/</u>
- Description of the packages: http://cmsdoc.cern.ch/cms/oo/repos_standalone/download/desc.php

Monte Carlo Generators

• Why Generators?

- Generators acts like accelerators(LHC,LEP,TEVATRON)
- Discovery of Top, Higgs, Supper-symmetry
- Allow theoretical and experimental studies of complex multi-particle physics
- Vehicle of ideology to disseminate ideas from theorists to experimentalists
- Predict the event rates and topology (Kinematics of particles resulted from collisions)
- Simulate possible backgrounds
- Study detector requirements

Monte Carlo Generators

- Study detector imperfections
- Evaluation of acceptance corrections
- Estimation of cross-sections ,branching ratios and decay Widths
- PDF uncertainties
- Hard processes and resonance decays
- ISR and FSR
- LO and NLO calculations

Event Generation Structure

• Initialization step

- Select process to study
- Modify physics parameters
- Set kinematic constraints
- Modify generator settings
- Initialize generator
- Book histograms

Generation loop

- Generate one event at a time
- Analyze it
- Add results to histograms
- Print a few events

• Finishing step

- Print cross-sections/BR
- Print/save histograms

- Full CMS simulation based on the Geant4 toolkit
- <u>Geant4</u>
 - Physics processes describing in detail electro-magnetic and hadronic interactions tools for the CMS detector geometry implementation interfaces for tuning and monitoring particle tracking
- CMS changed from CMSIM/GEANT3(Fortran) to OSCAR/GEANT4(C++) at the end of 2003
- OSCAR used for substantial fraction of DC04 production
- It is being used for physics TDR production

• <u>CPU</u>

- OSCAR \leq 1.5 x CMSIM - with lower production cuts

- <u>Memory</u>
 - ~ 110 MB/evt for pp in OSCAR ≈ 100 MB in CMSIM

<u>Robustness</u>

From ~1/10000 crashes in pp events (mostly in hadronic physics) in DC04 production to 0 crashes in latest stress test (800K single particles, 300K full QCD events)

Interfaces and Services

- Application steering handled by CMS framework
- Detector geometry construction automated via Detector Description Database which converts input from XML files managed by Geometry project Generator input (via RawHepEvent CMS format and recently HepMC) converted to G4Event
- Specific generator type and event format run-time configurable Interface from CMS magnetic field services to G4
- Field selection run-time configurable

- Propagation parameters via DDD/XML Infrastructure for physics lists and production cuts via DDD/XMLUser actions (monitoring, tuning) via dispatcher-observer pattern for observable entity Persistency
- Histogramming, monitoring etc transparently through CMS framework (COBRA)
- Time spent in <u>magnetic field query</u> (P4 2.8 GHz) for 10 minimum bias events (with delta=1mm) 13.0 vs 23.6 s for G3/Fortran field, new field ~1.8-2 times faster than FORTRAN/G3GEANT4 volumes can be connected to corresponding magnetic volumes ⇒ avoid volume finding ⇒ potential ~2x improvement with G4, possible to use local detector field managers

ORCA

- Framework for reconstruction and is intended to be used for final detector optimizations, trigger studies or global detector performance evaluation
- Object oriented system for which C++ has been chosen as programming language
- Design is based on CARF (CMS Analysis and Reconstruction Framework), which was developed to prototype reconstruction methods, initially for testbeam applications
- A database of digitized events which are created given as an input from OSCAR
- Contains: MC info, SimTrack, SimVertex
- Simulated hits (sub-detector info)

ORCA

- Digitized events and associations
- All Triggering levels (LV1,LV2,HLT)
- Reconstruction starts from above data as:
 - Data unpacking
 - Apply calibration scheme
 - Reconstruction of clusters or hits
 - Reconstruction of Tracks
 - Reconstruction of Vertices
 - Particle identification, (e, γ , μ/π ,Jets,b)

DSTs

- Store a complete record of all physics objects created during reconstruction process by ORCA
- Provide compact information for Analysis
- Consist of a set of homogeneous collections of Reconstructed (~50 objects)
- Objects looks like tracks, vertices, muons, electrons, light jets, b-jet, taus

http://cmsdoc.cern.ch/orca/testdata.html

Public Datasets

• PubDB link

- <u>http://cmsdoc.cern.ch/cms/production/www/PubDB/GetPublishedCollectionInfoFromRefDB.php</u>
- Dataset Name (link to RefDB) Owner Name (link to PubDB)
- Contains info about:
 - ORCA version
 - Compiler info
 - Luminosity
 - Number of Events
 - Run numbers
 - Regional centre(RC)
 - Grid station(server) link
 - Name Hits, Digi (pile-up + without pile-up), DST

Public Datasets

• For example if one wants to use the DST for tt inclusive channel

- dataset name (shows required channel)

- Name: jm03b_TTbar_inclusive
- Dataset owner: jm_DST871_2x1033PU_g133_OSC
- Background : jm03_Wjets_150_250 (dataset) jm_DST871_2x1033PU_g133_OSC (owner)

How to access datasets? (CRAB)

- <u>http://cmsdoc.cern.ch/cms/ccs/wm/www/Crab/</u>
- Prerequisites:
 - CERN AFS account on LXPLUS
 - CMS published data (PubDB)
 - GRID station name (e.g; CERN,FNAL,CNAF,IN2P3,LNL,BA etc.)
 - Working area should be UI
 - Valid GRID certificate and valid GRID-proxy on UI
 - Virtual organization must be CMS
 - CMS software's must be installed on UI
 - CRAB is a Python program intended to simplify the process of creation and submission of CMS analysis jobs into Grid environment.
 - Parameters and card-files for analysis should be provided by the user changing the configuration file *crab.cfg*.

CRAB

- CRAB generates scripts and additional data files for each job.
- The produced scripts are submitted directly to the Grid.
- CRAB is aimed to give access to all data produced on any GRID station in the world without any knowledge of LCG at all.
- Get it from CVS repository
- How to get a certificate from the CERN CA?

CRAB is a tool for the CMS analysis on the Grid environment. It is based on the ideas from CMSprod, a production tool

CRAB

- The CERN CA requires three conditions:
 - to have an LXPLUS account
 - to have a valid CERN access card
 - to be present at CERN
- How to get a certificate from the another CA
- If you cannot be at CERN anytime soon, you should request a certificate from Certificate Authority
 - <u>https://lcg-registrar.cern.ch/pki_certificates.html</u>
- NCP is also a Certificate Authority, issuing digital certificates to grid users/hosts
 - PK-Grid-CA, the only certification authority in Pakistan
 - You can submit an online request for user/host certificate at: http://www.ncp.edu.pk/pk-grid-ca

- Requirements:
 - Owner and dataset name to be analyzed
 - Executable (ExRootAnalysis, ExDSTStatistics...)
 - ORCA executable name (e.g: EXDigiStatistics): CRAB finds the executable in the user scram area (e.g:/afs/cern.ch/user/i/iahmed/ORCA_8_7_3/bin/Linux_2.4/here)
 - output_file name
 - name of outputs produced by ORCA executable (comma separated list). Empty entry means no output produced
 - total_number_of_events, job_number_of_events, first_event
 - total number of events to be analyzed, number of events for each job and first event number to be analyzed

• orcarc_file

- ORCA card to be used. This card will be modified by CRAB according to the job splitting. Use the very same card you used in your interactive test: CRAB will modify what is needed.
- data_tier
 - possible choices are ``DST, Digi, Hit" (comma separated list, mind the case!) If set, the job will be able to access not only the data tier corresponding to the dataset/owner asked, but also to its ``parents". This requires parents published in the same site of the primary dataset/owner. If not set, only the primary data tier will be accessible
- Create a proxy, before submitting jobs:
 - At CERN, you can use ``lxplus" as a UI by sourcing the file
 - In this case you would not need to move to a CRAB working directory.
 - The executable file is crab.py
 - CRAB uses initialization file *crab.cfg* which contains configuration parameters. This file is written in the Windows INI-style. The default filename can be changed by the *-cfg* option.

For Further Information:

https://lcg-registrar.cern.ch/pki_certificates.html http://lcg.web.cern.ch/LCG/catch%2Dall%2Dca/ http://service-grid-ca.web.cern.ch/service-grid-ca/ http://service-grid-ca.web.cern.ch/service-grid-ca/help/user_req.html http://service-grid-ca.web.cern.ch/service-grid-ca/help/renew.html http://cmsdoc/peopleCMS.shtml https://edms.cern.ch/file/454439//LCG-2-UserGuide