4th Workshop on Particle Physics, National Centre for Physics, Quaid-I-Azam University, Islamabad, Nov 14-19, 2005

Physics at the LHC, III

Michelangelo Mangano PH Department, Theoretical Physics, CERN michelangelo.mangano@cern.ch

Top quark production

- Heaviest elementary particle known today
- m_{top} 175 GeV ⇒ top Yukawa coupling=1! The most natural value for a fermion mass: a special role in Nature for the top quark?
- LHC will be a "top Factory": σ ~800 pb \Rightarrow 10⁷ events/yr, 1Hz!
- Large statistics ⇒ statistically accurate determinations of the top properties:
 - mass (crucial to better constrain/predict Higgs mass)
 - production cross-section (accurate QCD tests)
- New physics BSM
 - rare decays (indirect searches for new physics, e.g. FCNC)
 - signal, parent, partner and background for new particle production:
 - gluino \rightarrow top stop, stop \rightarrow top neutralino, $H^+ \rightarrow t$ bbar
 - top \rightarrow H⁺b

Some rare top decays

 $BR\left(\xrightarrow{t \to v} V_{tq} \right) \propto |V_{tq}|^2 = (10^{-4}, 1.610^{-3}, 1) \sim (1, \lambda^4, \lambda^6) \text{ for } q = d, s, b$

Probability of not identifying b quark large, $BR(t \rightarrow W+d \text{ or s})$ very hard to measure

Beyond any possible reach, unless new sources of FCNC. E.g., the SUSY partner of the above graph, with charginos and CKM-not-aligned down-type squarks.

t→WZb: m(b)+m(W)+m(Z)=176 GeV implies that the decay is just barely allowed by phase-space, once finite-width effects for the W and Z bosons are included. Very sensitive to m(top), could be an excellent probe of m(top). Unfortunately BR in the range of 10⁻⁶, below experimental sensitivity (need to include BR(Z→ee) and BR (W→ev) as well)

111111115318558510556591			
Mode	SM BR	Allowed by BSM	Atlas/CMS est reach
sW	1.6 E-3	0.25 (4th family)	not been studied
dW	~1 E-4	0.01 (4th family)	not neeb studied
bWZ	2 E-6	same	1 E-4
cWW	~1 E-13	1 E-6 (FCNC)	not been studied
cg	~5 E-11	1 E-3 (MSSM)	2 E-5 (cg->t)
Сү	~5 E-13	1 E-5 (MSSM)	3 E-5
cZ	~1 E-13	1 E-4	1 E-4
сН	< E-13	1 E-4	not been studied

Higgs production at the LHC

Several production mechanisms are possible, each of them being more or less important depending on:

- the value of the production rate
- the value of the decay BR to usable channels
- the size of the backgrounds

The relative importance of these aspects is a function of the Higgs mass

The ability to detect more than one production and/or decay channels is crucial to fully establish the properties of the Higgs boson, and to understand whether it behaves as predicted by the Standard Model

While a complete study of the Higgs boson will require data from several accelerators (e+e- linear collider, photon-photon collider, muon collider), the LHC will provide the first important inputs. Depending on m_H , the value of these inputs will vary significantly.

Four main production mechanisms at the LHC:

Gluon-gluon fusion (NNLO):

- Largest rate for all m(H).

- Proportional to the top Yukawa coupling, y_t

- gg initial state

Vector-boson (W or Z) fusion (NLO):

Second largest, and increasing rate at large m(H).
Proportional to the Higgs EW charge
mostly ud initial state

Z W(Z)-strahlung (NNLO):

- Same couplings as in VB fusion
- Different partonic luminosity (uniquely qqbar initial state)

ttH/bbH associate production (NLO):

- Proportional to the heavy quark Yukawa coupling, y_O,

dominated by ttH, except in 2-Higgs models, such as SUSY, where b-coupling enhanced by the ratio of the two

Higgs expectations values, $tan\beta^2$

- Same partonic luminosity as in gg-fusion, except for different x-range

Higgs production rates at the LHC

Higgs decays

couplings

Search channels:

 $gg \rightarrow H \rightarrow \gamma \gamma$

Acceptable BR only in the mass range m_{H}^{140} GeV (O(10⁻³)). Dominant background: QCD continuum production of YY final states, plus tails in the QCD dijet of Y-jet production, with

one or more jets fragmenting into isolated π^{0} , faking a γ .

Significance: 2.8 to 4.3σ for 100 fb⁻¹

Search channels: $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^-$ Effective once at least one Z can be on-shell, $m_{H} > 130$ GeV, both in the gluon fusion and vector boson fusion production modes

Main bg: direct QCD ZZ production

Main bg rejection criteria: low rate, sideband interpolation

Search channels: $H \to WW^{(*)} \to \ell \nu \ell' \nu'$ Effective once at least one W can be on-shell, $m_H > 120$ GeV, both in the gluon fusion and vector boson fusion production modes

Main bg: W-pair production from tt decays, and (smaller) from direct WW production Main bg rejection criteria:

- 1) absence of additional jets (as in top decays)2) momentum correlation among charged leptons
- 3) fwd jets (for VB fusion mode)

Exercise: prove that the matrix element for the signal is maximized when the two charged leptons have small invariant mass

With 5fb⁻¹, and 5% bg systematics:

m _H (GeV)	130	150	170	190
Signal	5	13	22	I4
Bg	3	4	5	7
S/√B	2. I	4.7	6.5	4.2

Search channels: $gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$

Challenging and complex topology 4 b-jets, 2 jets, 1 lepton $H \rightarrow bb$ $t \rightarrow bqq'$ $t \rightarrow b\ell v$

Main bg: ttbar production, in association with (possibly b) jets

Main bg rejection criteria: 1) multiple b tags 2) peak in m(bb) (try to achieve as good mass resolution as possible)

mH < 120 GeV needs 100 fb⁻¹

Discovery reach for low-mass Higgs at the LEP2 limit (115 GeV), with 10 fb⁻¹

	Н→үү	ttH→ttbb	qqН→qqтт
S	130	15	IO
В	4300	45	IO
S/√B	2.0	2.2	2.7

Will require the combination of several, low-significance, channels. Combined significance:

Discovery reach for low-mass Higgs just above the LEP2 limit (130 GeV), with 10fb⁻¹

	Н→үү	qqH→qqWW	qqН→qqтт	H→41
S	120	18	8	5
В	3400	15	6	<1
S/√B	2.0	3.9	2.7	2.8

Combined significance: $\mathbf{6} \, \mathbf{\sigma}$

Light Higgs reach at the LHC

I year of data taking at nominal luminosity should be sufficient for the two experiments to detect a Higgs through most of the expected mass range

High mass region

- Easy discovery using H→ZZ→4 leptons for 200<m_H<600 GeV
- H width larger than detector resolution for $m_{H}^{>300}$ direct measurement of total width!
- Combine several channels m_H>600 GeV:
 - $H \rightarrow ZZ \rightarrow 2$ lept 2 V, 2lept q qbar
 - $H \rightarrow WW \rightarrow lv q qbar$

Direct measurement of Higgs mass and width

Direct measurement of Higgs couplings

Different production and decay channels provide measurements of the following combinations of partial decay widths

$$\begin{split} X_{\gamma} &= \frac{\Gamma_{W}\Gamma_{\gamma}}{\Gamma} & from \ qq \to qqH, \ H \to \gamma\gamma, & Y_{\gamma} = \frac{\Gamma_{g}\Gamma_{\gamma}}{\Gamma} & from \ gg \to H \to \gamma\gamma, \\ X_{\tau} &= \frac{\Gamma_{W}\Gamma_{\tau}}{\Gamma} & from \ qq \to qqH, \ H \to \tau\tau, & Y_{Z} = \frac{\Gamma_{g}\Gamma_{Z}}{\Gamma} & from \ gg \to H \to ZZ^{(*)}, \\ X_{W} &= \frac{\Gamma_{W}^{2}}{\Gamma} & from \ qq \to qqH, \ H \to WW^{(*)}, & Y_{W} = \frac{\Gamma_{g}\Gamma_{W}}{\Gamma} & from \ gg \to H \to WW^{(*)} \end{split}$$

 $\ll 1$

Ratios of X or Y quantities factor out not just the partial widths to either W or gluon, but also the overall initial-state parton luminosities and uncertainties on the production cross-sections.

$$y = \frac{\Gamma_b}{\Gamma_{\tau}} = 3c_{QCD}\frac{g_{Hbb}^2}{g_{H\tau\tau}^2} = 3c_{QCD}\frac{m_b^2(m_H)}{m_{\tau}^2}$$

$$\varepsilon = 1 - \left(B(H \to b\bar{b}) + B(H \to \tau\tau) + B(H \to WW^{(*)}) + B(H \to ZZ^{(*)}) + B(H \to gg) + B(H \to \gamma\gamma)\right)$$

$$\tilde{\Gamma}_W = \left(\Gamma_{\tau} + \Gamma_b + \Gamma_W + \Gamma_Z + \Gamma_\gamma + \Gamma_g\right)\frac{\Gamma_W}{\Gamma} = (1 - \varepsilon)\Gamma_W$$

Measurement of Higgs couplings

Coupling ratios

Absolute couplings

Rare Higgs decays

$H \rightarrow \mu^+ \mu^-$: SM BR=10⁻⁴, reach for 6000 fb⁻¹

m _H (GeV)	S/√B	δσ×BR/σ×BR
120	7.9	0.13
130	7. I	0.14
140	5.1	0.20
150	2.8	0.36

 $H \rightarrow Z\gamma \rightarrow \mu^{+}\mu^{-}\gamma$: independent determination of HZ coupling. Sensitivity in the range of 3.5 σ with 600fb⁻¹, 11 σ with 6000fb⁻¹

MSSM Higgs discovery potential

 $h^{O}, H^{O}, A^{O}, H^{\pm}$

MSSM specific decays: $A/H \rightarrow \mu\mu, \tau\tau, tt$ $H \rightarrow hh$ $A \rightarrow Zh$ $H^{\pm} \rightarrow \tau\nu$

If SUSY particles light enough: $-H/A \rightarrow \chi_2^{0}\chi_2^{0} \rightarrow \chi_1^{0}\chi_1^{0} + 4$ lept's -h produced in cascade decays

For a large fraction of the parameter space with mA<500GeV, more than one Higgs bosons will be visible with the expected luminosity

Higgs particles which can be observed with >5 σ in different areas of m_A-tan β parameter space

Example, h production in cascade decays

Supersymmetry: what, why, where

- Spectrum doubling: one bosonic degree of freedom (dof) of for each fermionic dof, and viceversa
- enhanced relations among and constraints on couplings/masses
- space-time Lorentz symmetry ⇒ particle ↔ antiparticle
- space-time Supersymmetry \Rightarrow particle \leftrightarrow sparticle
- SUSY has a priori fewer parameters than non-SUSY:
 - m(particle)=m(sparticle)
 - couplings(particle)=couplings(sparticle)
 - Higgs selfcoupling (λ) related to weak gauge coupling: $\lambda \phi^4 \sim g_W \phi^4$
- All complexity and parameter proliferation of SUSY are just a consequence of SUSY breaking (SSB)!!

- A minimal SUSY extension of the SM, with arbitrary pattern of spontaneous SUSY breaking, has over 100 extra parameters (scalar and gauge-fermion masses, mixings among SUSY partners of quarks and leptons)
- This is not much worse than an arbitrary extension to leptons and hadrons of Fermi's theory of weak interactions, before Feynman, Gell-Mann and Cabibbo, or even before LEP/SLC firmly established the parameters of the SM. One could have needed parameters to describe:
 - non V-A couplings (S, P, T, V+A)
 - non-universal couplings to hadronic currents, and to μ or τ currents
 - more complex Higgs structures
 - different realisations of EWSB
- Therefore parameter proliferation in SUSY is most likely the consequence of our current ignorance of the specific dynamics leading to SUSY breaking.

Benchmark goal for SUSY studies at the LHC:

GET CLUES ON THE MECHANISM OF SUSY BREAKING

The accuracy of SUSY measurements at the LHC should be gauged by the above goal:

is the accuracy sufficient to discriminate among different SSB models?

Supersymmetry breaking: constraints

- No SUSY observed as yet: Susy particles must have masses typically larger than 100 GeV
- Nevertheless they cannot be arbitrarily large, to prevent the artificial fine tuning which justified SUSY in first place:

 $m_{\tilde{p}} \gg 1 \text{ TeV}$

• Generic Susy breaking (SSB) leads to unacceptable FCNC. Therefore need to require suppressed FCNC (Flavour conservation is to SUSY what GIM has been for the SM):

$$\varepsilon_{K} \sim \left(\frac{100 \ TeV}{m_{\tilde{q}}}\right)^{2} Im \left(\frac{\Delta m_{\tilde{d}_{L}\tilde{s}_{L}}^{2}}{m_{\tilde{d}}^{2}} \frac{\Delta m_{\tilde{d}_{R}\tilde{s}_{R}}^{2}}{m_{\tilde{d}}^{2}}\right) < 2 \cdot 10^{-3}$$
$$\mu \not\rightarrow e\gamma \Rightarrow \sin 2\theta_{\tilde{e}\tilde{\mu}} \frac{\Delta m_{\tilde{e}\tilde{\mu}}^{2}}{m_{\tilde{e}}^{2}} < 0.01$$

Supersymmetry breaking models: minimal Supergravity

SUSY breaking at an intermediate scale:

 $M_{SSB} \sim \sqrt{m_W m_{Plank}} \sim 10^{11} \ GeV$

Universal scalar and fermion SSB masses at the Planck scale:

 $m_H = m_0$ $m_{\tilde{V}} = m_{1/2} \quad \forall V = g, \gamma, W, Z$

Implications:

- mass splitting at EW scale induced radiatively ⇒ no FCNC problems
- mass squared for H naturally driven negative by large top Yukawa coupling
- correlation between Higgs and gaugino masses
- correlations between different gaugino masses:

 $m(\tilde{g})/m(\tilde{\chi}) \sim \alpha_s/\alpha_W$

 $m(\tilde{B}) = (5g'^2/3g^2) m(\tilde{W}) \sim 0.5m(\tilde{W})$

Supersymmetry breaking models: gauge-mediated SSB

SUSY breaking in a strongly coupled sector, transferred to the low energy sector only via gauge interactions at an intermediate scale:

m_{SSB} ~ 1-100 TeV

Consequences:

- SSB flavour independent ⇒ no FCNC problems
- Relations among SSB parameters determined by gauge couplings: $\frac{m(\tilde{q})}{m(\tilde{\ell})} \sim \frac{\alpha_s}{\alpha_w} \gg 1$, unlike SUGRA $\frac{m(\tilde{g})}{m(\tilde{\chi})} \sim \frac{\alpha_s}{\alpha_w}$, like SUGRA

 $\begin{array}{ll} m(\tilde{q}) \sim m(\tilde{g}) , & m(\tilde{\ell}) \sim m(\tilde{\chi}) \\ m(\tilde{\chi}_1^{\pm}) \sim m(\chi_2^0) \end{array}$

gravitino as Lighest SUSY Particle: $\chi^0 \to \tilde{G}\gamma$ or $\tilde{\ell} \to \tilde{G}\ell$

depending on which is the NLSP

SUSY DM

In conclusion:

- The exploration of the SUSY spectrum provides invaluable information on the physics at scales much larger than the LHC's. For example:
 - Indications of a mSUGRA-like spectrum would set the scale of SSB

at 10¹¹ GeV, and would provide a probe of physics at the Grand Unification scale: connection with neutrino masses, implications for flavour changing phenomena in teh charged-lepton spectrum, etc.

• Indications of a GMSB-like spectrum would indicate the existence of new phenomena at a scale of the order of 10-100-TeV

• The most valuable information will come from the comparison of

- gaugino masses (gluino vs. charginos vs. neutralinos)
- lighest susy particle (neutralino?) properties !!
- scalar masses (SU(2) doublet (L-type) vs singlet (R-type) scalars, squarks vs sleptons, 1st generation vs 2nd and 3rd)
- of particular interest is the value of the stop mass, because of its connection with the Higgs mass

Production of SUSY particles

- Discrete quantum number, R=1 for "normal" particles, R=-1 for SUSY states. If R conserved:
 - pair production.
 - lightest SUSY particle is stable (=> Dark matter candidate)
- Strongly interacting (squarks -- e.g. stops, gluinos):

Weakly interacting (photino, W-ino, Z-ino, higgsino => charginos/neutralinos)

 $m_{\tilde{\chi}} \sim 150 \text{ GeV} \Rightarrow \sigma \sim 1 \text{pb}^{-1}$

Decays of SUSY particles

 χ^{\pm}

 χ^{0}_{2}

W±

 χ^0_1

 $\gamma^0_1 = LSP$

• weakly interacting:

 strongly interacting: for massive states spectacular multi-body chain decays, possibly including EW sparticles, enhancing their production rate. Very difficult, but possible, to disentangle the full spectroscopy!

Ζ

SUSY searches at the LHC

(many more details in R.Cashmore's lecture)

Example of mass reconstruction:

 $\chi_2^0 \rightarrow \tilde{\ell}^{\pm} \ell^{\mp} \rightarrow \chi_1^0 \ell^+ \ell^-$

 $\max(m(\ell^+\ell^-)) = m(\chi_2) \sqrt{\frac{m^2(\chi_2) - m^2(\tilde{\ell})}{m^2(\chi_2)}} \sqrt{\frac{m^2(\tilde{\ell}) - m^2(\chi_1)}{m^2(\ell)}}$

Examples of measurement accuracies for a specific model, in ATLAS:

Measurement	Expected	valueError (%)
	(GeV)	300 fb^{-1}
m_0	100 GeV	±3
$m_{1/2}$	300 GeV	±1.3
tanβ	2.1	± 2
m_h	93	± 0.2
$m_{\ell^+\ell^-}$ end-poin	t109	± 0.2
$m_{ ilde{\ell}_{P}}$	157	±0.3
$m_{\tilde{\ell}_I}^{\circ_K}$	240	±1
$m_{\tilde{q}_L}$	690	±1
$m_{\tilde{q}_R}$	660	±1.5
m _g	770	±1.5
$m_{\tilde{t}_1}$	490	± 10

Summary of LHC physics potential

- Quark substructure:
 - probed in high-transverse momentum, large-angle quark-quark scattering; measure the deviation from point-like rate. Push the "size" of the quark down by more than one order of magnitude w.r.t. today
- New gauge interactions, e.g. right-handed W bosons, extra U(1)'s (as present in string theories), etc.
 - probed in pp -> l+l- or jet-jet, searching for peaks in the invariantmass spectrum. Can test presence of interactions with EW-like strength up to 5-6 TeV
- Discover the Higgs boson over the domain up to 1 TeV, and determine to 10-20% the value of several of its couplings
- Detect several Higgses, if SUSY, over a good fraction of parameter space

- Measure the anomalous couplings of gauge bosons, and test for possible deviations from EW dynamics at scales up to several TeV.
- Provide first key measurements of SUSY parameters:
 - m(gluino), m(chargino) -> test possible GUT relations, adding to evidence of GUT from gauge coupling unification
- Assess whether the neutralino accounts for DM
- Explore in unprecedented detail the physics of b-flavour: rare BR's to 1/10⁹, deviations from unitarity of the CKM mixing matrix. Potential to test the presence of virtual SUSY particles in loop-mediated decays, such as

 $B_s \rightarrow \mu^+ \mu^-, \ b \rightarrow s \gamma$

• Ready to detect the unexpected!

Conclusions

- Many independent probes of the frontier of physics exist or are being built:
 - Cosmology: WMAP, Planck, SN, Digital Sloan, Dark Matter searches ...
 - Astrophysics: Gravitational wave detectors, VHE cosmic ray arrays, ...
 - Gravity: measurements of deviations from Newton's law
 - Low-enerrgy precision tests: g-2, K physics, B-physics, Atomic Parity Violation, etc
 - and more.....
- Indirect observation of possibly revolutionary indications of new physics, however, are no substitute for the direct observation of the particles responsible for this new physics:
 - which particle is associated to DM?
 - what is the field-theory origin of the inflaton? of the quintessence?
 - what is giving g-2 different than expected?
- The next generation of accelerators will be extremely expensive (time and \$\$), and input from the LHC results will be crucial to define the future directions of the field.
- We unfortunately still don't know of alternatives to the quest for the most basic laws of Nature other than HEP collisions.
- LHC is a crucial step forward in this quest.