

5th Particle Physics Workshop

National Centre for Physics

Quaid-i-Azam University Campus, Islamabad

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE Hans-H. Braun, CERN

An Overview of Accelerator Applications Synchrotron Radiation, from Nuisance to Bright Light Beams for Medicine Particle Accelerators for Particle Physics

Introduction to Linear e⁺/e⁻ Colliders and CLIC Linear Colliders - Motivation and Concept Technical Challenges for Linear Colliders CLIC

5th Particle Physics Workshop

National Centre for Physics

Quaid-i-Azam University Campus, Islamabad

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE Hans-H. Braun, CERN

1st Lecture History and Physics Principles of Particle Accelerators

o Origins

o From Zyklotron to Synchrotron

o Defocusing + Focusing = Focusing

o Particle Colliders

<u>Origins</u>

One of the first particle beam set-up's

(Marsden didn't get a stamp)

The Rutherford-Geiger-Marsden Experiment (1906-1913)

Showed that the Thomson (or Plum Pudding) model of the atom is wrong ! Atoms consists of extremely small nucleus of positive electric charge, carrying almost all the mass of the atoms. The nucleus is surrounded by a diffuse cloud of almost weightless electrons with negative charged.

Rutherford experiment started interest in subatomic length scales

Ernest Rutherford cajoled for years British industry to push development of high voltage sources as replacement for the α -emitters in his experiments.

Why?

- Higher flux of particles
- Particles of higher velocity ⇔ higher momentum ⇔ higher kinetic energy

Motivations for higher beam energies I

Theory of microscope:

Only objects larger than the wavelength λ of light can be resolved

Louis De Broglie 1923:

Particles have wave properties with wavelength given by

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2m E_{KIN}}} = \frac{h}{\sqrt{2m q U}}$$

Motivations for higher beam energies II

Repulsive

0

Attractive

Coulomb barrier for charged-particle reactions

Motivations for higher beam energies III

Einstein^{*} **1905**: Energy equivalent to mass

$E = m c^2$

⇒ Collisions of energetic particles can create new particles, if kinetic energy is sufficient

collision of gold atoms at 100 GeV

Electrostatic Generators

Van de Graaff Generator, 1931

Limited to ≏20MV by electrical sparking

IN TANDEM

BNL's Tandem Van de Graaff became operational in 1970 as the world's highest energy Van de Graaff facility and the first with two such accelerators installed backto-back. Able to accelerate 65 different stable positive and negative ions and a number of radioactive ones, the Tandem has made new isotopes, revealed nuclear interactions and tested the radiation resistance of space-bound electronic devices. This workhorse is now the first link of the chain of accelerators leading to RHIC.

• Particle gains energy at each gap, total acceleration $N_{GAP} \cdot V_{RF}$ Applied acceleration is N times higher than electric voltage !

Wiederoe's first LINAC

In 1928 voltage from RF oscillators was small and the linear accelerator, (or LINAC) not competitive with electrostatic accelerators

RADAR technology boosted the development of RF sources during World War II. This eventually made LINAC's the accelerator of choice for many applications.

Inside proton linac

Electron Linacs

Because of higher particle velocity ($\approx c_0$), higher frequency (1.3-30 GHz) and different accelerating structure types.

Most common building block it traveling wave structure.

Electrically coupled TM₀₁₀ resonant cavities

Condition for acceleration $\Delta \varphi = \omega / c \cdot d$, with $\Delta \varphi$ the phase difference between adjacent cells

TM₀₁₀ "pill box cavity mode"

$$E_{Z} = E_{0} J_{0}(\frac{\omega}{c}r) \cos(\omega t)$$
$$B_{\phi} = -\frac{E_{0}}{c} J_{1}(\frac{\omega}{c}r) \sin(\omega t)$$

Resonant frequency given by 1st zero

of Bessel function, $\omega = 2.405 \frac{c}{R}$ ω independent of *d* !

Stored Energy

$$W = \int_{0}^{d} \int_{0}^{2\pi R} \frac{\varepsilon_0}{2} (E_Z^2 + c^2 B_\phi) r \, dr \, d\phi \, dz$$
$$= \frac{\pi}{2} \varepsilon_0 \, d \, E_Z^2 R^2 J_1 (2.405)^2$$

Power loss given by

$$P = -\frac{\omega}{Q}W, \quad Q \approx \frac{7 \cdot 10^8}{\sqrt{f}}$$
(typical Q value for copper
accelerating structures)

Coupled chain of resonators

$$E_{i}'' + \omega_{0}E + aE_{i-1}'' + E_{i+1}'' = 0$$

Ansatz

 $E_{i-1} = e^{i(\omega t + \varphi)}$, $E_i = e^{i\omega t}$, $E_{i+1} = e^{i(\omega t - \varphi)}$;

 \Rightarrow Dispersion relation $\omega = \frac{\omega_0}{\sqrt{1 + 2a\cos\varphi}}$

wavenumber

Group velocity \Rightarrow

$$k = \frac{\varphi}{d}$$
$$v_G = \frac{d\omega}{dk} = \frac{a \, d \, \omega_0 \sin k d}{\left(1 + 2a \cos k d\right)^{\frac{3}{2}}}$$

 φ

3 GHz accelerating structure of CTF3

Input power	30 MW
Pulse length	1.5 µs
Length	1 m
Beam current	3.5 A
Acceleration	9 MV
Frequency	2.99855 GHz

Dipole modes suppressed by slotted iris damping (first dipole's Q factor < 20) and HOM frequency detuning

The <u>same</u> acceleration gap traversed many times !

Example: a typical proton Zyklotron

B = 1.7 T R = 0.75 m $f = \frac{eB}{2\pi m} = 25.92 \text{ MHz}$ $E_{KIN} = \frac{(eBR)^2}{2m_P} = 1.247 \cdot 10^{-11} \text{ J} = 77.86 \text{ MeV}$

 \Rightarrow Cyclotron principle works only for beam energies

 $E_{KIN} @m_0 c^2$

For example for protons

E_{KIN} © 938 MeV

(with some tricks ©600 MeV can be obtained)

The Synchrotron

Proposed independently and simultaneously 1945 by McMillan in the USA and Veksler in the USSR

E.M. McMillan V. Veksler

To make synchrotron work magnetic field, RF frequency and voltage have to be controlled following a system of coupled equations:

$$\frac{dE_{kin}(t)}{dt} = eV_{RF}f(t)$$

$$B(t) = \frac{mc}{eR}\sqrt{\frac{(E_{kin}(t) + mc^2)^2}{m^2c^4} - 1}$$

$$f(t) = \frac{v(t)}{2\pi R}$$

$$v(t) = c\sqrt{1 - \frac{m^2c^4}{(E_{kin}(t) + mc^2)^2}}$$

Taken relativistic mass increase into account !

⇒ Synchrotron can be build for very high energies.
 For proton beams limits are given by achievable magnetic field and size.
 Largest synchrotron LHC at CERN (under construction), 27km circumference, B_{MAX}=8.3 T, E_{KIN}=7.000.000 MeV

Variation of parameters with time in a proton synchrotron

How to keep beam particles together ?

1952 Courant, Snyder and Livingston propose "alternating gradient focusing"

focusing + defocusing = focusing

E. Courant H. Snyder

ler S. Livingston

defocusing + focusing = focusing

Introduction of AG focusing had tremendous impact on beam quality and accelerator size and cost !

In turned out that Christofilos from Athens had filed an U.S. patent on this idea already in 1950, but nobody had noticed !

*with Lola

What is the advantage of collider?

18.2.60. Sphe of affairs. Discused place with (hipo . Decided for " subside" storage. G. proposed use of y-beau also for electrons typical possibility: -03 St. = X= X-beau, T= rouget M, = separating unapriet, St .= Storage rungeret, C = Acc. in wit. Bosic formula $q = N^2 (v\tau)^2 \frac{\sigma}{q} \cdot \frac{c}{\pi R}$ N= uniter of particles accepted per pue V= repetition role of the Synch (V=20) non fi guo Fallowie Gree the fo : Le großtime the coursempti a più complicator. Auserti Bro non fo, qualto given fo orolito. To most an dutte a to good and a good come of the base for forthe purry and watte a min one *D T 5. Hillioni / ano: Schurle oli References. 09.2.10-2 Als per 100 port. (Semigri

Same pages from Bruno Touscheks 1960 notebook

From AdA to LHC.

961	AdA, Frascati	e⁺/e⁻
964	VEPP 2, Novosibirsk, URSS	e⁺′e⁻
965	ACO, Orsay, France	e⁺/e⁻
969	ADONE, Frascati, Italy	e⁺/e⁻
971	CEA, Cambridge, USA	e⁺/e⁻
972	SPEAR, Stanford, USA	e⁺/e⁻
974	DORIS, Hamburg, Germany	e⁺/e⁻
975	VEPP-2M, Novosibirsk, URSS	e⁺/e⁻
977	VEPP-3, Novosibirsk, URSS	e⁺/e⁻
978	VEPP-4, Novosibirsk, URSS	e⁺/e⁻
978	PETRA, Hamburg, Germany	e⁺/e⁻
979	CESR, Cornell, USA	e⁺/e⁻
980	PEP, Stanford, USA	e⁺/e⁻
981	Sp-pbarS, CERN, Switzerland	p/p
982	Fermilab p-pbar, USA	p/p
987	TEVATRON, Fermilab, USA	p/p
989	SLC, Stanford, USA	e⁺/e⁻
989	BEPC, Peking, China	e⁺/e⁻
989	LEP, CERN, Switzerland	e⁺/e⁻
992	HERA, Hamburg, Germany	e+/-/p
994	VEPP-4M, Novosibirsk, Russia	e⁺/e⁻
999	DAΦNE, Frascati, Italy	e⁺/e⁻
999	KEKB, Tsukuba, Japan	e⁺/e⁻
999	PEP-II, Stanford, USA	e⁺/e⁻
2003	VEPP-2000, Novosibirsk, Russia	e⁺/e⁻
2007	LHC, CERN, Switzerland p/p	and Pb/Pb
1961	VEP 1, Novosibirsk, USSR	e⁻/e⁻
1971	ISR, CERN, Switzerland	p/p
2000	RHIC, Brookhaven, USA	ion/ion

DAΦNE

LNF Frascati 500 MeV e⁺/e⁻ collider

In the tunnel of the CERN SppS proton antiproton collider 450.000 MeV, 7 km circumference

- 1967 Unified Theory of electromagnetic and weak interaction Field quanta γ , W[±] and Z⁰
- 1979 Nobel price for Glashow, Weinberg, Salam

$$egin{aligned} M_W^2 &= Konst \ \cdot \ rac{1}{\sin^2 \Theta_W} \ M_Z^2 &= M_W^2 \ \cdot \ rac{1}{\cos^2 \Theta_W} \end{aligned}$$

- 1983 Discovery of W^{\pm} and Z^{0} at SppS /CERN
- 1984 Nobel price for Rubbia and van der Meer

Working principles of the most common accelerators.

Enabling technologies for accelerators

- Electron, proton and ion sources
- Vacuum systems
- Magnet technology
 - Iron/copper magnets
 - Fast pulsed ferrit magnets
 - Superconducting magnets
 - Permanent magnets
- RF power sources
- Accelerating RF structures
 - Normal conducting
 - Superconducting
- Cryogenic Systems
- Electromagnetic sensors
- High speed electronics
- High precision electronics
- Electric power systems
- Large scale precision alignment
- Large scale computer control systems
- > Laser

▶ . . .

Tunnel construction techniques

Many technological developments were promoted by accelerator needs

Recommended literature

Accelerator physics general

H. Wiedemann, "Particle Accelerator Physics," (2 volumes), Springer 1993

K. Wille, "The Physics of Particle Accelerators : An Introduction," Oxford University Press, 2001

S.Y. Lee, "Accelerator Physics," World Scientific, 2004

A. Chao and M. Tigner (editors), "Handbook of Accelerator Physics and Engineering," World Scientific, 1999

T. Wangler, "RF Linear Accelerators," John Wiley 1998

M. Minty and F. Zimmermann, "Measurement and Control of Charged Particle Beams," Springer 2003

Accelerator key technologies

M.J. Smith and G. Phillips, "Power Klystrons Today," John Wiley 1995

M. Sedlacek, "Electron Physics of Vacuum and Gaseous Devices," John Wiley 1996

H. Padamsee, J. Knobloch, T. Hays, "RF Superconductivity for Accelerators," Wiley 1998

J. Tanabe, "Iron Dominated Magnets," World Scientific 2005

K. Mess, P. Schmüser, S. Wolff, "Superconducting Accelerator Magnets," World Scientific, 1996

For more accelerator book references <u>http://uspas.fnal.gov/book.html</u>

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE Hans-H. Braun, CERN

2nd Lecture Examples of Modern Applications and their Technological Challenges

- o Synchrotron Radiation, from Nuisance to Bright Light
- o Beams for Medicine
- o Particle Accelerators for Particle Physics

