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Standard Model process
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e New Physics beyond S.M.
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The Radiative Partner

In Radiative B-decay Process, there are two major
contributions to the amplitude:

e Inner Bremsstrahlung (1B)
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e Structure Dependent (SD)
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where
H"™ = iF{(q®)e" Pkopp— Falq®)(p - kg™ — p"k")

" =ualp,)y*(L+ys)v(p;,s;)

q" = p—k)" = (1 +py)*
It depends on vector and axial vector form factors.



The decay constant and form factors are defined as
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The Structure Dependent part is given by
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For real photon we can write
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The contribution to absorptive part are all possible intermediate states
that coupleto By and are annihilated by the weak vertex (0p3(0) |n)
These include the multiparticle contrinum as well resonances with
guantum numbers 1™ and 1°.
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We assume that the contributions from the radial excitations of B
and g dominate the higher state contribution.
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where

If we model the continum contributions by quark triangle graph,
we have
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To get constraints on the residuesg; it Is useful to study the
asymptotic behavior of form factors 77, and £ .
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In spirit of the current algebra, the equal time commutator in the
first term can be evaluated to be
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In heavy quark limit using the asymptotic behavior of equation
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the convergence condition restricts
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Restriction to the first two radial excitations we have
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Ward Identities, determination of form

factors and coupling constants
Define
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Ward ldentities used to relate different form factors appearing in
our calculation are
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Using gauge invariance we have
Fy(q?) = s F1(qg?)
Fi(q?) = w2Fa(g?)
To make use of Ward Identities to relate different form factors, define
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Using Gauge Invariance we can write

F1(q?) = 2[g+ = q°h1 — Mgh2]
F3(q?) = 2[~g+ = q*h — (M5 — q% ) h2 ]
Finally
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The normalization of these form factorsat 42 = 0 IS
determined by the universal from factor ¢, (0) and it getsthe
contribution from quark-triangle graph,
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Restricting to the oneradial excitation we have
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So the coupling constants become
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Thefinal form of the form factors become
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Using the numerical values of the parameters involved we have
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Second Radial Excitation
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where 4 is the parameter which in principle can be obtained when gz,
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For numerical analysiswe use 4= 0, 3.0, 4.8. Now the coupling of
BwithB"y and By becomes

gpny = [1— (1- M3.IM3. ) (1 - M5.IM3. )4 ]5.6 Gev ™

fi BMBj1

fom = ——| 1 (1- 13,3, Y(1-MB, MG, Y |6.5Gev

The corresponding form factors becomes
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For numerical valuesweshall use 4=0 . 4=3and4=48 . The

second value of 4(= 3) corresponds to estimate of £8*By from
vector meson dominance
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The third value of A(=4.8) gives more or less the width for B* — By
obtained from MI transition in non relativistic quark model
(NRQM). These values give decay width for B* — By transition
23 keV, 5.5 keV and 0.8 keV respectively while Ml transition in
NRQOM predictsit to be 0.9 keV. These predictions are testable
when above decay width is experimentally measured.



The final expression for form factors in terms
of the dimensionless variable x becomes
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Branching Ratio

Using the form factors calculated above we have

B(B - ylv,) = 0.5x107° for [ =pu
=0.38x10° (I=u,4=230)

=0.32x10° (/=p A=4.8)
e CLEO 2x10-°

e Bethe-Salpeter approach 0.9 x10-

e Light-Cone QCD (2-5) x10-6

e Monte-Carlo Simulation 5.2x10-°






Conclusion

« Wehavestudied B — yIlv; decay using dispersion relations,
asymptotic behavior and Ward I dentities.

e Thedispersion relation involves ground statep*and B, resonances
and their radial excitations which model contributions from higher
states and continuum contribution, which is calculated from quark
triangle graph.

e The asymptotic behavior of form factors and Ward Identities fix
the normalization of the form factorsin terms of universal
function g «(0) at g?=0 and put constraints on the residues. Thusin
our approach, a parameterization of g? dependence of form factors
IS not approximated by single pole contributions.

e Taking into account the radial excitations, form factors and
coupling constants are calculated. Using these as an input
Branching ratio is calculated and compared it with different
approaches.

e Finally the partial decay width vs. the photon energy spectrumis
plotted and it is found that our peak shifts towards the lower value
of x.
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