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Dust is ubiquitous

Gas and dust are the main constituents of the Universe.

FOUR SCIENTIFIC COMMUNITIES :

1. ASTROPHYSICS AND SPACE PHYSICS :
— Planetary magnetospheres & rings,
Comets, Protostars, Molecular clouds,
Interstellar space, Nebulae, etc.

2. INDUSTRIAL PLASMA PROCESSES
— Wafer contamination in microelectronics,
Formation and growth of dust in plasma deposition
and HF etching exptts.
Agglomeration — fractal structures.

3. BASIC PLASMA PHYSICS :
— WAVES, INSTABILITIES, NEW MODES, DAMPING,
STRONGLY COUPLED PLASMAS,
dust-plasma crystals,
dust-plasma liquids. KE <« U

4. EARTH’S ENVIRONMENTS :
"NOCTILUCENT CLOUDS” have origin in pollution,
above 80 km (mesopause)
”terrestrial arosols” like industrial pollution,
satellite burning, rocket exhaust ......
Strong radar backscattering (or, electron ”bite-out”)
Global warming (green house effect) may be due to
dust in the noctilucent cloud.



Our Activities in Plasma Physics

Laser-Plasma Interactions

Microwave radiation in plasmas and semiconductors
Various nonlinear effects

Self-generated mega-gauss magnetic field
Waveguides

Beat Wave Accelerators : Excitations and Instabilities
Realtivistic Effects

Dusty Plasmas : Waves and Instabilities

Dusty Magnetoplasmas

Nonuniform Plasmas

Jeans Instabilities

Wakefields and Dust Crystals

SNS potential

Charging of dust grains

Nonspherical grains

Long-ranged order formation in colloidal plasmas



Dust-lower-hybrid wave in a dusty magnetoplasma

Dust-acoustic waves (in unmagnetized) dusty plasmas :

A low-frequency (~ 15Hz) and longwavelength (~ 1¢m) mode known
as dust-acoustic (DA) wave has been extensively studied both theo-

retically and experimentally :
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However, the magnetic field is invariably present in space plasma systems

or can be applied for experimental purposes in laboratory plasmas.



Fluid equations governing the excitation of the plasma modes in
general are :

i) Momentum balance equation

v, q vi
a—;‘ + (Vo - Vv, = —W;Wﬁ + Vo X Wea — &V”a — Vala, (1)

ii) Equation of continuity

Y (o) =0 2
iii) Poisson’s equation
Vi = —47 3 qalta. (3)

Solving Egs.(1-3) by the usual technique, we obtain the linear dielectric

function as
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For the low-frequency electrostatic dust-lower-hybrid mode propagating nearly
perpendicular to the magnetic field with wy < w K we K wWee and kv <K Wpa,
we obtain from Eq.(5)
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where the electrons and ions are assumed to have the same drift velocity, u,.
For u, = 0 and v, = 0, the linear dispersion relation of the DLH mode is
obtained for k£, > ky -
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For the collision dominated plasmas, we assume Ve,, Vi, > (w — k:”uo) and
w? > 13 for the cold dust. Using Eqs.(6), the dispersion relation of the DLH

mode is given by

kij w?, Neo T
. [1+k'2 2 (1+n_T>], (9)

where we used v, /Ve, = (Time/Temi)l/Q.

Using Egs.(6), the damping rate of this mode for k; > k| is obtained as
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Thus, the DLH mode can grow when u, > w/kj with growth rate determined

€=

by Eq.(10). It is noticed from the above equations that the dynamics of electrons

is not important for the ion-dust hybrid wave.



Using Vlasov-kinetic equation
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where Ty, = I,(b;) exp (=b;), b; = k3v2/w?, and I, is the zero-order modified

Bessel function of argument (b;).

Damping rate of the mode is given by

_ 2 2
YL = _WDLHEi/QWpd-

For the usual parameters in laboratory experiments, mg/m; ~ 10'2, By ~

1kG one can obtain w. ~ 10% Hz and wyg ~ 1072 Hz. Thus, the dust cyclotron

frequency will be too small to be detected in the laboratory conditions. It may

be significant in space environments. However, the dust-lower-hybrid frequency

may take a significant value, wprg ~ 10> Hz for Zgng,/ni, = 1.



Dust-lower-hybrid instability

The dielectric response function (w < w;)
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The dusty plasmas support the following two dust-modes under the
specific condition :
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where Cy = wypgApe. Here we assume kj > k, for almost parallel propagation
of the dusty plasma mode. Consequently, the modification of the mode by the
external magnetic field will be negligible.

2
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where wap = Weipa/Wpi-

These conditions are usually valid for relatively high density plasma (wy; > we;)
and for almost perpendicular propagation (k; ~ k). This case represents an
ion-dust plasma where the electrons are ”eaten up” by the dust grains on stick-
ing collisions. Here, the magnetic field on ions plays larger role than that of the
thermal effect of the electrons.

Phys. Scr. 73, 169 (2006).

Phys. Plasmas 9, 5121 (2002).



Magnetosonic Wave Instability In a Streaming Dusty Plasma

Waves and instabilities occupy the major part of basic research in dusty plasma
physics in recent years.

EM Magneto-acoustic waves in a Magnetized Dusty Plasma
Vlasov equation:
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The components of the conductivity tensor can be written down.
Generally,we can write
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with u,v = z, y z. One can immediately write down the components
of the dielectric tensor from

o
My (20)
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Using the Maxwell’s curl equations and the definition of the current
density, we can write down the wave equation in the form

2

4
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or,
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I being the unit dyadic.



The general dispersion relation of any wave either electrostatic or
electromagnetic, in a flowing plasma is given by

| D |=0. (24)

We finally obtain the plasma dispersion tensor in the magnetized
dusty plasma as

where the components of the plasma dispersion tensor D are
kic®  4mi
Dy = 1_(/'('}2"}_;?0-3::67
4
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Dy = 1=—5 40w (26)
4
Dyz = T Oy,
kJ_k 02 4
sz - w! + w Oz,
4
Dzy = Ta-zya
k2c?  4mi
D, = 1-— :2 —0,,.

Equation (24) can be simplified to study the properties of a particular
mode in a flowing magnetized multicomponent plasma.
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Magnetosonic Wave Instability

Let us consider the propagation of an EM wave nearly perpendicular
to the external static magnetic field having a small but finite & in
a flowing dusty plasma. We assume w < wg, B, = E, = 0, B, #
0, k ~ 2k, + 2k, k2 > k:” From Eq.(24), the dispersion relation of the
magnetosonic wave is given by
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where [; is the modified Bessel function of order I, b, = k3v} /2w? |

and &, = (W — koo — lwea) /K| Vta-

When dust is taken unmagnetized and electrons and ions are assumed
magnetized (wg < w < Wy <K Wee), We obtain

k3 c? w Wi Wy
= =1+ 4+ f;— = (32)
wr w2, W w

Thus, for high density plasma limit, wgi JwZ > w2 /w2 > 1, we obtain
the dispersion relation

w” = wiy, + ki v7, (33)
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where wy = cw.;/wy; and the dust-lower-hybrid frequency and is given
by wiy, = ngwgi/ sz'-

This is the usual EM magnetosonic wave, modified by the presence of
the unmagnetized dust grains, having a cutoff at wg,. Obviously, this

low-frequency EM mode reduces to the usual magnetosonic wave in
an electron-ion plasma (w? = k%v?) in absence of the dust.

M. Salimullah and G.E. Morfill, Phys. Rev. E 59, R 2558 (1999);

P. K. Shukla, M. Salimullah, and G. Sorasio, Phys. Plasmas 9, 5121
(2002).

M. Salimullah and M. Rosenberg, Phys. Lett. A 254, 347 (1999).
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On the Shukla-Nambu-Salimullah potential in magnetized plasmas

In magnetized plasmas, there are two electrostatic potentials, viz.,
the almost spherically symmetric Debye-Hiickel and the strongly
anisotropic Shukla-Nambu-Salimullah (SNS) potentials. The physics
of the later potential is due to the ion polarization drift. The ex-
act solution for the SNS-potential introduces a new shielding length
across the external magnetic field which is much larger than that of
the Debye-Hiickel potential.

The existence of this new electrostatic potential in magnetized plas-
mas was first pointed out in several papers :

M. Salimullah and P.K. Shukla, Phys. Plasmas 5, 4205 (1998).

M. Salimullah and M. Nambu,

J. Phys. Soc. Japan 69, 1688 (200);
Phys. Lett. A286, 418 (2001);
Phys. Rev. E 63, 056 403 (2001).

P.K. Shukla, M. Nambu, and M. Salimullah,
Phys. Lett. A 291, 413 (2001).

M. Salimullah, P.K. Shukla, M. Nambu, O. Ishihara,
and A.M. Rizwan,
Phys. Plasmas 10, 3047 (2003).

H. Nitta, M. Nambu, M. Salimullah, and P.K. Shukla,
Phys. Lett. A 308, 451 (2003).
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The S-IN-S potential originates from the modified ion-acoustic waves
which are the electrostatic [ f (w < w.;) waves. Since the modified ion-
acoustic waves are the mixing mode between the ion-acoustic and
ion-cyclotron waves, which propagate obliquely to the external mag-
netic field direction, they couple with the ions polarization drifts. In
a magnetized plasma, the ions perform the polarization drifts with
drift velocity v, = i(dE, /dt)/Bywe;.

The dispersion relation of the modified ion-acoustic waves are w =
twp = £k)Cs /(1 + kLpS)l/Q, where C5 = wyidpe, ps = Cs/wei.

Dielectric Response Function
For the Maxwellian electron-ion plasma (7, > T;) with electrons as
the Boltzmann gas, ions are governed by

. E
%? + (v - V) = fm + Ui X Wi — Vi, (34
on;
(97; +V-nw;, = 0, p; =nikpT;. (35)
Thus,
1 K Wi
B 1 ML -
€(w7—) LTIV k2>\ + k2 wQ w? + kQU“ — kHUu cz‘/WQ
k2 1— Wy /W

- pll=wu/h) g

k2 w w2 + k203 — k”vm w2 /w2
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For w < w and ky =0, k. =k, one can obtain

() =1+ 4 “in (37)
R =S VA e

The condition ¢(k) = 0 yields a fourth-order equation in k
k*+ Ak + B =0, (38)
where
A = (w5 + kv + wpi) [vi, B = kiwg [vi;. (39)
For f = wgi/wfi > 1 and C, > vy, B/A? < 1 and

— A+ A(1 - 2B/A?%)

ki =
* 2

) ke = 1/)\De- (40)

The 4+ branch is

n ik, |
VI +03/C2) +1

which corresponds to the S-IN-S potential modified by the ion ther-

mal velocity.

ke = (41)

The other solution gives the usual Debye-Hiickel potential modified
by the external magnetic field

ko =+ik2+ k(1 +1/f). (42)

It should be mentioned here that the S-N-S potential originates
from the ion polarization drift in magnetized plasmas in contrast to
the Debye-Hiickel potential which comes from the quasi-neutrality.
For f > 1, the ion-polarization drift should dominate in comparison
with the contribution coming from the departure from the quasi-
neutrality.
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EXACT SNS POTENTIAL :
For the modified ion-acoustic waves

1 12 w2 k2w
5 T ) u%l - *”@' (43)
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where f = ng Jw,.
FINALLY,
ety = 2 PO MG D Y+ DIz = vt + 02/ And
VP U+ D]z — vt + 0 |
(12)
FOR p =0,
xp (—&/L ADe
(€) = 1qlfe p(;/ ||)’ L :1_[)]\4_2. (13)
FOR ¢ = 0,
/ xp (—p/L 1
O(p) = \/1q—|—7fe p( pﬂ/ Do 1_+Mf_2 o, 14

THUS, SNS POTENTIAL IS ELLIPTICAL IN SHAPE
ELONGATED ACROSS THE EXTERNAL MAGNETIC FIELD.

Phys. Lett. A 300, 82 (2002).
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On Shukla-Nambu-Salimullah potential in a streaming
dusty magnetoplasma

The appropriate dielectric constant of electrostatic waves in a mag-

netoplasma is

1 kK Wh kW w,
k) =1 ML %pi T p — pd . 1
k) =1+ 55 P, R Wl R (w— kjuin)®  (w— kyVp)? .
,_ KCi+ K (10
1+ k23, + k2 fA,)

B o 22
where C; = wpgApe, Cs = wpiApe, and f = wpi/wci'

The electrostatic potential around a test dust particulate is

¢ O(w—k-vy)
212k?  e(w, k)

where r = x — v4t, v; is the velocity vector of a test dust particulate,

d(x,t) =

exp (ik - r) dk dw, (2)

and ¢ is its charge.
Substituting Eq. (1) into Eq. (2) and performing the 6-integration,
we obtain the total electrostatic potential in the cylindrical coordi-

nates (p, 0, z)

0w — kyvy)Jo(kp) exp (ik) &) k1 dk | dw dk
®(p’5):%/k2+k( jvt)Jo(kLp) (iky€) ko dk I

24 k2 f— k‘ﬁwgi (w — kjup)? — — k202 d/(w — k’HVo)

where k. = 1/Ape, £ = z — vyt.

On performing the w-integration, one readily obtains

K+ {kz (f + 1) + K21 M;> = M5 )} — K2R M

where M; = |v; — uy|/Cs and My = |vy — Vp|/Cy.
It is noted that the denominator of Eq. (4) is quadratic in Af.

Introducing the dimensionless notation K = kAp., Eq. (4) can be

17



rewritten as

B(p, &) = / K Jo(K1p/Ape) exp (iK€/Ape) K1 dK | dK) 5
0 mAne (KT + K3) (K] — KD) |
where
2

K2 = :tg (a) b

0,1 5 + 5 + 0,
0= K2(f+1)+1- M2 M2, (6)

b= K2M;?>

Breaking into partial fractions, Eq. (5) yields

(& Kﬁ Jo(K1p/Ape) exp (iK§/Ape) K1 dK | dK|
dr(x 75)_( )/ (K0+K2)(K”+K§) ;

7T)‘De

_ (4 K Jo(K1p/Ape) exp (iK|§/Ape) K1 dK 1 dK)
brr(x,t) = ( >/ (KO _|_K2)(KH K12) )

Evaluating K -integration, the new Debye-shielding and dynamical

7T>\De

potentials can be obtained from Egs. (7) and (8) as

w101 (1) [ g (52wt .

2%) <KL:0> : <K1§>
) K, dK,. 1
(p, ) ( o / Ko + K o, Sin . Ldi | (10)

Our results show that both repulsive SNS screening and attractive
dynamical wake potentials are drastically affected by the magnetic
field.

In conclusion, we stress that the knowledge of the newly found
interaction potentials are a necessary prerequisite for designing new
laboratory experiments, so that robust dust-Coulomb crystals in the

presence of an external magnetic fiield could be fabricated.
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Long-ranged Order Formation of Colloids of Implanted Ions in a
DC Biased Piezoelectric Semiconductor

A dc bias in a piezoelectric semiconductor may drive a beam of electrons which
could charge the neutralized colloids of implanted ions and cause a uniform drift of
charged colloidal particles.

The periodic wakefield may cause a long-ranged ordered structure of charged col-
loidal particles within the semiconductor to exhibit various additional properties.

In the presence of the uniform dc bias F,;, the ratio of V|, to u.g is

‘/0 _ qu/dedn . gme Ven

(1)

Uen eEd/meVen B emq Vdn.
WAKE POTENTIALS

Using the standard plasma fluid equations for the Doppler-shifted
electrons and colloid particles and including the electron-phonon cou-
pling effect, the dielectric constant of the piezoelectric semiconductor

plasma is given by

iw? S2k202 w2
1) — pe B s pd 2
E(wa ) €L + o' (VO — i+ i]{?QU;er/W/) w? — ]{:2082 (u) - k- V0)2’ ( )

where w' = w — k- u,. The third term in the right-hand side of Eq.
(2) is the piezoelectric contribution from the lattice where S is the
dimensionless electromechanical coupling coefficient. The numerical

value of S? for most of the piezoelectric semiconductors is ~ 1073.
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The electrostatic potential around an isolated test charged partic-

ulate is given by

ox.t) =0 [ 5(;’26_(12‘)”) exp [ik - r] dk dw, (3)

o2

where r = x—v;t, v; is the velocity vector of a test charged particulate,

and ¢ is its charge.

We may then rewrite Eq. (2) as

ot = LERD [ (ko — B+ eb? - RODY
k2 ADe (w? = k2CZ)(w — Ky Vo)?
where ) s
S<k=C2\
Wiy = o Le, (5)
1 + ELkz)\De
k202
/%2 - d (6)

1 + €Lk2)\%67
and Cd = u)pd)\De.
The inverse of the real part of the dielectric constant, ¢(w, k), can

be written as
1 k2 A%, {wi(w — Ky Vo)? + wip(w® — K2C2)}

(k) ~ Tt eh?Xh, | (w2 — ROB)(w — kyVo)? — {wh(w — kyVo)? + hlid )
7

Substituting Eq. (7) into Eq. (3) and following the standard mathe-

matical techniques, we obtain the total electrostatic potential
D =P+ D7+ Dyyy, (8)

where

di r
() 9
495 VELADe ©)
is the static Debye-Hiickel screening potential with the effective screen-

ing length ,/e;\p. and the effective charge ¢;/¢;,. We now use (p,0, 2)

as the cylindrical coordinates of r, where r = (p2 + z2)1/2.

4; S’ ApC?
T T heTs ) x
272

or1(p, 2,t) = (
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/ kY (w — Fy Vo)? 0(w — kyvy) exp (ik - 1) d°k dw (10)

D Y

D = (1+ e,k*AD)[(w* — K*C2)(w — ky Vo) (1 + e£k*AT),) — (w — Ky Vo)2 Sk C2NT, — (w?

where ¢ =z — vt and v, || Z is assumed.
Performing w— and 6—integrations in Eq. (10), we readily obtain
25202)\4
Cr1(p, 2,t) = (qt : De)
7
(1+ eLkQ)\%e)(kﬁv? — k2082){kﬁ(1 +erk?)3,) — k203 (vy — Vo) 2}

Introducing the dimensionless notation K = k, /¢, Ap., we can write

q;S°C3
7I_6%\/5)\De

rr(p,€) = ( ) /OOO dK K Jo(K 1 p/vVerpe) I, (12)

where
I — /oo (Kﬁ + KJQ_)2K|% exp (ZKHg/\/E)\De) dK”
7 s (14 K + K3)(Kfo? — K2CH{KF(1+ K?) — K2C3 (v — Vo) 2}
(13)

Since the last factor of the denominator of Eq. (13) is quadratic in

Kf, we can write
Kf(1+ K} + K7) — (Kj + K7)Ci(ve — Vo) 2 = (K} + K3)(KF — K7), (14)

where

— M2
+VEIM 2+ (1+ K2 — M2)2/4,  (15)

and M = (v; — Vy)/Cy. For K, <1 and M > 1
Ki~1, Ki~K:M? (16)

Carrying out the K -integration, we have

2457 1 Kip . K&
®;(p, &) = (e%\/EADe ></O Jo T, Sin NPT K, dK,. (17)
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Thus, we obtain for p =0

2¢2S*M Cos(&/Ly
q)II(g) t 5 ( / )’
€L €]
where L, = M /ér Ap. and [£]| > L is assumed.

The second part of the additional dynamical potential is

(18)

2/\ C’ d(w — kyvp) (w —k2C2
Qrrr(r,t =& 972 ! / ! ) )

1_|_€Lk2)\2 ) €xXp (Zk I') k> dedeQdkHdw

(19)
where D = (w? — k*C2)(w — kVp)? — {wiy (w — kyVp)? + wip(w?® — k*CH)}.

Introducing the dimensionless variable K = k,/e;A\p. and following
the same procedure, we finally obtain

2} Cos(él/L.)

(I)Ill(g) = EL(l _ Mfg) |€’

(20)
Comparing Egs. (18) and (20), we note that for S? < M, M > 1

Drr1(§) > ®r1(8). (21)

In order to have some appreciation of our theoretical result, we

take parameters of a moderately doped n-InSb where n., = 10'* cm™3,

L = 300° K, ¢, = 15.8, and C, ~ 10° cm/s. For M = 1.5, Ap. and L;
turn out to be 0.1 ym and 0.6 ym, respectively. This one-dimensional
alignment of colloidal particles would modify the properties of the

bulk semiconductor.
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