The derivative of the topological susceptibility at zero momentum and an estimate of η' mass in the chiral limit J. Pasupathy^a, J. P. Singh^b, R. K. Singh^a and A. Upadhyay^b ^a Center for High Energy Physics, Indian Institute of Science, Bangalore-560 012, India ^b Physics Department, Faculty of Science, M.S. University of Baroda, Vadodara-390 002, India #### Abstract The anomaly-anomaly correlator is studied using QCD sum rules. Using the matrix elements of anomaly between vacuum and pseudoscalars π , η and η' , the derivative of correlator $\chi'(0)$ is evaluated and found to be $\approx 1.82 \times 10^{-3}$ GeV². Assuming that $\chi'(0)$ has no significant dependence on quark masses, the mass of η' in the chiral limit is found to be \approx 723 MeV. The same calculation also yields for the singlet pseudoscalar decay constant in the chiral limit a value of \approx 178 MeV. The axial vector current in QCD has an anomaly $$\partial^{\mu}\bar{q}\gamma_{\mu}\gamma_{5}q = 2 i m_{q} \bar{q}\gamma_{5}q - \frac{\alpha_{s}}{4\pi} G^{a}_{\mu\nu}\tilde{G}^{a\mu\nu}, \quad \text{where, } \tilde{G}^{a\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}G^{a}_{\rho\sigma}. \tag{1}$$ The topological susceptibility $\chi(q^2)$ defined by $$\chi(q^2) = i \int d^4x \, e^{iq \cdot x} \langle 0|T \{Q(x), Q(0)\} |0\rangle, \quad \text{with, } Q(x) = \frac{\alpha_s}{8\pi} \, G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$ (2) $$\chi'(0) = \frac{d\chi(q^2)}{dq^2}\Big|_{q^2=0}$$ ### Using despersion relation one can write $$\frac{\chi'(q^2)}{q^2} - \frac{\chi'(0)}{q^2} = \frac{1}{\pi} \int ds \ \Im(\chi(s)) \left[\frac{1}{s(s-q^2)^2} + \frac{1}{s^2(s-q^2)} \right] + \text{subtractions}.$$ ## Defining the Borel transform of a fuction $f(q^2)$ by $$\hat{B}f(q^2) = -q^2, n \to \infty \ \left[\frac{(-q^2)^{n+1}}{n!} \ \left(\frac{d}{dq^2} \right)^n \ f(q^2) \right]_{-q^2/n = M^2}$$ #### one gets from Eq.(4) $$\chi'(0) = \frac{1}{\pi} \int ds \, \frac{\Im(\chi(s))}{s^2} \left(1 + \frac{s}{M^2} \right) \, e^{-s/M^2} - \hat{B} \left[\frac{\chi'(q^2)}{q^2} \right]. \tag{6}$$ $\Im(\chi(s))$ receives contribution from all states $|n\rangle$ such that $\langle 0|Q|n\rangle \neq 0$. $$\langle 0|Q|\pi^0\rangle = i f_\pi m_\pi^2 \left(\frac{m_d - m_u}{m_d + m_u}\right) \frac{1}{2\sqrt{2}}.$$ (7) The matrix elements, when $|n\rangle$ is $|\eta\rangle$ or $|\eta'\rangle$, can be determined as follows. It is known theoretical considerations based on chiral perturbation theory as well as phenomenological and one needs two mixing angles θ_8 and θ_0 to describe the coupling of the octet and siglet as currents to η and η' [7, 8, 9]. Introduce the definition $$\langle 0|J_{\mu 5}^{a}|P(p)\rangle = i f_{P}^{a} p_{\mu}; a = 0, 8; P = \eta, \eta',$$ $$J_{\mu 5}^{8} = \frac{1}{\sqrt{6}} \left(\bar{u} \gamma_{\mu} \gamma_{5} u + \bar{d} \gamma_{\mu} \gamma_{5} d - 2 \bar{s} \gamma_{\mu} \gamma_{5} s \right) \qquad (9)$$ $$J_{\mu 5}^{0} = \frac{1}{\sqrt{3}} (\bar{u} \gamma_{\mu} \gamma_{5} u + \bar{d} \gamma_{\mu} \gamma_{5} d + \bar{s} \gamma_{\mu} \gamma_{5} s).$$ (10) The $|P(p)\rangle$ represents either η or η' with momentum p_{μ} . $$\begin{pmatrix} f_{\eta}^{8} & f_{\eta}^{0} \\ f_{\eta'}^{8} & f_{\eta'}^{0} \end{pmatrix} = \begin{pmatrix} f_{8} \cos \theta_{8} & -f_{0} \sin \theta_{0} \\ f_{8} \sin \theta_{8} & f_{0} \cos \theta_{0} \end{pmatrix}$$ $$(11)$$ Escribano and Frere find, with $$f_8 = 1.28 f_\pi \ (f_\pi = 130.7 \text{MeV}),$$ the other three parameters to be $$\theta_8 = (-22.2 \pm 1.8)^\circ$$, $\theta_0 = (-8.7 \pm 2.1)^\circ$, $f_0 = (1.18 \pm 0.04) f_\pi$. The divergence of the axial currents are given by $$\partial^{\mu} J_{\mu 5}^{8} = \frac{i 2}{\sqrt{6}} \left(m_{u} \bar{u} \gamma_{5} u + m_{d} \bar{d} \gamma_{5} d - 2 m_{s} \bar{s} \gamma_{5} s \right)$$ (14) $$\partial^{\mu} J_{\mu 5}^{0} = \frac{i 2}{\sqrt{3}} \left(m_{u} \bar{u} \gamma_{5} u + m_{d} \bar{d} \gamma_{5} d + m_{s} \bar{s} \gamma_{5} s \right) + \frac{1}{\sqrt{3}} \frac{3 \alpha_{s}}{4 \pi} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}$$ (15) Since $m_u, m_d << m_s$, one can neglect them [10] to obtain $$\langle 0|\frac{3\alpha_s}{4\pi}G^a_{\mu\nu}\tilde{G}^{a\mu\nu}|\eta\rangle = \sqrt{\frac{3}{2}}\,m_\eta^2\,\left(f_8\,\cos\theta_8 - \sqrt{2}f_0\,\sin\theta_0\right) \tag{16}$$ $$\langle 0|\frac{3\alpha_s}{4\pi}G^a_{\mu\nu}\tilde{G}^{a\mu\nu}|\eta'\rangle = \sqrt{\frac{3}{2}}\,m_{\eta'}^2\,\left(f_8\,\sin\theta_8 + \sqrt{2}f_0\,\cos\theta_0\right).$$ (17) Using Eqs.(7), (16) and (17) we get the representation of $\chi(q^2)$ in terms of physical states as $$\chi(q^2) = -\frac{m_{\pi}^4}{8(q^2 - m_{\pi}^2)} f_{\pi}^2 \left(\frac{m_d - m_u}{m_d + m_u}\right)^2 - \frac{m_{\eta}^4}{24(q^2 - m_{\eta}^2)} \left(f_8 \cos \theta_8 - \sqrt{2}f_0 \sin \theta_0\right)^2 - \frac{m_{\eta'}^4}{24(q^2 - m_{\eta'}^2)} \left(f_8 \sin \theta_8 + \sqrt{2}f_0 \cos \theta_0\right)^2 + \text{higher mass states.}$$ (18) On the other hand, $\chi(q^2)$ has an operator product expansion [11, 12, 1, 5] $$\chi(q^2)_{OPE} = -\left(\frac{\alpha_s}{8\pi}\right)^2 \frac{2}{\pi^2} q^4 \ln\left(\frac{-q^2}{\mu^2}\right) \left[1 + \frac{\alpha_s}{\pi} \left(\frac{83}{4} - \frac{9}{4}\ln\left(\frac{-q^2}{\mu^2}\right)\right)\right]$$ $$-\frac{1}{16} \frac{\alpha_s}{\pi} \left\langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \right\rangle \left(1 - \frac{9}{4} \frac{\alpha_s}{\pi} \ln\left(\frac{-q^2}{\mu^2}\right)\right) + \frac{1}{8q^2} \frac{\alpha_s}{\pi} \left\langle 0 | \frac{\alpha_s}{\pi} g_s G^3 | 0 \right\rangle$$ $$-\frac{15}{128} \frac{\pi \alpha_s}{q^4} \left\langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \right\rangle^2 + 16 \left(\frac{\alpha_s}{4\pi}\right)^3 \sum_{i=u,d,s} m_i \left\langle \bar{q}_i q_i \right\rangle \left[\ln\left(\frac{-q^2}{\mu^2}\right) + \frac{1}{2}\right]$$ $$-\left[\frac{q^4}{2} \int d\rho \, n(\rho) \, \rho^4 \, K_2^2(Q\rho) + \text{screening correction to the direct instantons}\right]. (19)$$ From Eq.(6), we now obtain $$\chi'(0) = \frac{f_{\pi}^{2}}{8} \left(\frac{m_{d} - m_{u}}{m_{d} + m_{u}}\right)^{2} \left(1 + \frac{m_{\pi}^{2}}{M^{2}}\right) e^{\frac{-m_{\pi}^{2}}{M^{2}}} + \frac{1}{24} \left(f_{8} \cos \theta_{8} - \sqrt{2} f_{0} \sin \theta_{0}\right)^{2} \left(1 + \frac{m_{\eta}^{2}}{M^{2}}\right) e^{\frac{-m_{\eta}^{2}}{M^{2}}} + \frac{1}{24} \left(f_{8} \sin \theta_{8} + \sqrt{2} f_{0} \cos \theta_{0}\right)^{2} \left(1 + \frac{m_{\eta'}^{2}}{M^{2}}\right) e^{\frac{-m_{\eta'}^{2}}{M^{2}}} - \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \frac{1}{\pi^{2}} M^{2} E_{0}(W^{2}/M^{2}) \left[1 + \frac{\alpha_{s}}{\pi} \frac{74}{4} + \frac{\alpha_{s}}{\pi} \frac{9}{2} \left(\gamma - \ln \frac{M^{2}}{\mu^{2}}\right)\right] - 16 \left(\frac{\alpha_{s}}{4\pi}\right)^{3} \frac{1}{M^{2}} \sum_{i=u,d,s} m_{i} \langle \bar{q}_{i}q_{i} \rangle - \frac{9}{64} \frac{1}{M^{2}} \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left\langle\frac{\alpha_{s}}{\pi}G^{2}\right\rangle + \frac{1}{16} \frac{1}{M^{4}} \frac{\alpha_{s}}{\pi} \left\langle g_{s} \frac{\alpha_{s}}{\pi} G^{3} \right\rangle - \frac{5}{128} \frac{\pi^{2}}{M^{6}} \frac{\alpha_{s}}{\pi} \left\langle\frac{\alpha_{s}}{\pi}G^{2}\right\rangle^{2}.$$ (20) Here $E_0(x)=1-e^{-x}$ and takes into account the contribution of higher mass states, which has been summed using duality to the perturbative term in χ_{OPE} , and W is the effective continuum threshold. We take $W^2=2.3~{\rm GeV^2}$, and Fig.1 plot the r.h.s. of Eq.(20) as a function of M^2 . We take $\alpha_s=0.5$ for $\mu=1~{\rm GeV}$ and $$\langle 0|g_s^2G^2|0\rangle = 0.5 \text{ GeV}^2$$, $\langle 0|\bar{s}s|0\rangle = 0.8\langle 0|\bar{u}u|0\rangle$ with $\langle 0|\bar{u}u|0\rangle = -(240 \text{ MeV})^3$, $m_s = 150 \text{ MeV}$ and $m_u/m_d \approx 0.5$. (21) Writing $$\langle 0|g_s^3 G^3|0\rangle = \frac{\epsilon}{2}\langle 0|g_s^2 G^2|0\rangle,$$ (22) as in Ref. [5], we take $\epsilon = 1 \text{ GeV}^2$. We also have the PCAC relation, $$-2(m_u + m_d) \langle 0|\bar{u}u|0 \rangle = f_{\pi}^2 m_{\pi}^2.$$ (23) For f_0 , f_8 , θ_8 and θ_0 we use the central values given in Eqs.(12) and (13). Fig. 1: Various ters contributing to $\chi'(0)$, Eq.(20). The value of $\chi'(0)$ is the one obtained without the direct instantons. The latter, see Eq.(29), is given by χ'_{DI} , which is larger than χ'_{OPE} and also has the wrong M^2 behaviour suggesting that screening corrections are important. $$\chi'(0) \approx 1.82 \times 10^{-3} \text{ GeV}^2$$. We note that the above determination, Eq.(24), is in agreement with an entirely different calculation by two of us [14] from the study of the correlator of isoscalar axial vector currents $$\Pi_{\mu\nu}^{I=0} = \frac{i}{2} \int d^4x \, e^{iq.x} \langle 0 | \{ \bar{u}\gamma_{\mu}\gamma_5 u(x) + \bar{d}\gamma_{\mu}\gamma_5 d(x), \bar{u}\gamma_{\mu}\gamma_5 u(0) + \bar{d}\gamma_{\mu}\gamma_5 d(0) \} | 0 \rangle$$ $$\Pi_{\mu\nu}^{I=0} = -\Pi_1^{I=0}(q^2) \, g_{\mu\nu} + \Pi_2^{I=0}(q^2) q_{\mu}q_{\nu}. \qquad (25)$$ $\Pi_1^{I=0}(q^2=0)$ can be computed from the spectrum of axial vector mesons. In Ref. [14] a value $$\Pi_1^{I=0}(q^2=0) = -0.0152 \text{ GeV}^2$$ It is not difficult to see that when $m_u = m_d = 0$ $$\chi'(0) = -\frac{1}{8} \Pi_1^{I=0} (q^2 = 0)$$ On the other hand, $\chi(q^2)$ has an operator product expansion [11, 12, 1, 5] $$\begin{split} \chi(q^2)_{OPE} &= -\left(\frac{\alpha_s}{8\pi}\right)^2 \, \frac{2}{\pi^2} \, q^4 \, \ln\left(\frac{-q^2}{\mu^2}\right) \, \left[1 + \frac{\alpha_s}{\pi} \, \left(\frac{83}{4} - \frac{9}{4} \ln\left(\frac{-q^2}{\mu^2}\right)\right)\right] \\ &- \frac{1}{16} \, \frac{\alpha_s}{\pi} \, \langle 0| \frac{\alpha_s}{\pi} G^2 |0\rangle \, \left(1 - \frac{9}{4} \frac{\alpha_s}{\pi} \, \ln\left(\frac{-q^2}{\mu^2}\right)\right) + \frac{1}{8q^2} \frac{\alpha_s}{\pi} \, \langle 0| \frac{\alpha_s}{\pi} g_s G^3 |0\rangle \\ &- \frac{15}{128} \frac{\pi \alpha_s}{q^4} \, \langle 0| \frac{\alpha_s}{\pi} G^2 |0\rangle^2 + 16 \left(\frac{\alpha_s}{4\pi}\right)^3 \sum_{i=u,d,s} m_i \, \langle \bar{q}_i q_i \rangle \, \left[\ln\left(\frac{-q^2}{\mu^2}\right) + \frac{1}{2}\right] \\ &- \left[\frac{q^4}{2} \int d\rho \, n(\rho) \, \rho^4 \, K_2^2(Q\rho) + \text{screening correction to the direct instantons}\right] \, . \end{split}$$ $$n(\rho) = n_0 \, \delta(\rho - \rho_c) \qquad (28)$$ with $n_0 = 0.75 \times 10^{-3}$ GeV⁴ and $\rho_c = 1.5$ GeV⁻¹. The contribution of the direct instanton to $\hat{B}[\chi'(q^2)/q^2]$ can be found using the asymptotic expansion for $K_2(z)$ and $K_2'(z)$ and we find it to be $$\chi'_{DI} = \frac{n_0}{4} \sqrt{\pi} \rho_c^4 M^2 \left[M \rho_c + \frac{9}{4} \frac{1}{M \rho_c} + \frac{45}{32} \frac{1}{M^3 \rho_c^3} \right] e^{-M^2 \rho_c^2}.$$ (29) Fig. 1: Various ters contributing to $\chi'(0)$, Eq.(20). The value of $\chi'(0)$ is the one obtained without the direct instantons. The latter, see Eq.(29), is given by χ'_{DI} , which is larger than χ'_{OPE} and also has the wrong M^2 behaviour suggesting that screening corrections are important. We now turn to an estimate of η' mass in the chiral limit: $m_u = m_d = m_s = 0$. SU(3) flavor symmetry is exact and, we have $m_{\pi}=m_{\eta}=0$ while η' is a singlet. #### Let us denote by $$\eta_{\chi} = \eta'(m_s = 0)$$ and $m_{\chi} = m_{\eta'}(m_s = 0)$, we first note that the explicitly quark mass dependent term in χ_{OPE} $$-16\left(\frac{\alpha_s}{4\pi}\right)^3 \sum_{i=u,d,s} m_i \langle \bar{q}_i q_i \rangle \approx 1.9 \times 10^{-6} \text{ GeV}^4$$ is numerically much smaller than, for expample $$\frac{9}{64} \left(\frac{\alpha_s}{\pi} \right)^2 \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle \approx 4.5 \times 10^{-5} \text{ GeV}^4$$ which itself is much smaller than the perturbative term. #### In the chiral limit $\langle 0|Q|\pi\rangle = \langle 0|Q|\eta\rangle = 0$. If we assume that the quark mass dependence of $\chi'(0)$ is negligible then $\chi'(0)$ in Eq.(20) can also be expressed in term of $f_{\eta_{\chi}}$ and m_{χ} as: $$\chi'(0) = \frac{1}{12} f_{\eta\chi}^2 \; \left(1 + \frac{m_\chi^2}{M^2}\right) e^{\frac{-m_\chi^2}{M^2}} - \hat{B} \left[\frac{\chi'_{OPE}(q^2)}{q^2}\right].$$ $$\begin{split} \frac{1}{12} f_{\eta\chi}^2 \; \left(1 + \frac{m_\chi^2}{M^2}\right) e^{\frac{-m_\chi^2}{M^2}} \; &\approx \; \frac{1}{24} f_\pi^2 \left(1 + \frac{m_\pi^2}{M^2}\right) e^{\frac{-m_\pi^2}{M^2}} \\ &+ \; \frac{1}{24} \left(f_8 \cos \theta_8 - \sqrt{2} f_0 \sin \theta_0\right)^2 \left(1 + \frac{m_\eta^2}{M^2}\right) e^{\frac{-m_\eta^2}{M^2}} \\ &+ \; \frac{1}{24} \left(f_8 \sin \theta_8 + \sqrt{2} f_0 \cos \theta_0\right)^2 \left(1 + \frac{m_{\eta'}^2}{M^2}\right) e^{\frac{-m_\eta^2}{M^2}}. \end{split}$$ Fig. 2: Estimate of η' mass and coupling in the chiral limit, see Eq.(31). The continuous curve corresponds to $m_{\chi} = 723$ MeV. We find $m_\chi \approx 723$ MeV and corresponding $f_{\eta_\chi} = 178$ MeV.