Quantum ElectroDynamics
As I Look into it

Dr.Farida Tahir

Physics department
CIT, Islamabad




QED

Ingredients

X Electrons, Positrons
X Photons

Recipe
Dirac equation to describe electron and positron.

Maxwell equation for photon.

Transformation of the field representing a
particle or system (symmetry concept/gauge
invariance)



Result

Feynman diagrams (Tool/Device)

Out come of result

Quantum mechanical amplitudes based on
perturbation theory to calculate cross-section

The rate for scattering processes



This is the Plan/Outline
of my Lectures



X The Electrons

What do you know about electron?
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Coloumbs Law L
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* The Coloumbs interaction of two

electrons at separation r is I

2
Co

| )
M7

Magnitude of electron
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What’s New In Old



Simple idea great information

* In High Energy Physics (HEP), h =c =1

M =[E]e] r =[]l

X Length and reciprocal Energy has the same

dimension
Er = i = = =0.0073 | Strength of the interaction
/ 7T 137.03604 between two electrons
dimensionless sommerf eld fine

t
seructure constt 0.000053



Let’s start our formal
journey



There must be
some set of
smallest
constituent
parts, which are

the building
blocks of all ’

matter.
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Klein-Gordon Equation

* Relativistic Energy-momentum relation

2 b 2 2 4
E"—pcc=m’c

* In four vector notatign =

P*P,—m’c* =0
(—hzﬁ_‘;@ﬂ —mzcz)\P =0
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* In time space component form
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Comment on Klein-Gordon Eq

* Schrodinger discoverd this eq. before non-
relativistic (which is on his name)

X But, rejected due to non-compatibility with
statistical interpretation of V.

X Pauli and Weisskopf (1934) showed that the
statistical interpretation itself has flaw in
relativistic quantum theory.

X Restored the Klein-Gordon equation to it rightful
place.

X Keep Dirac equation for spin 2 particles



M Dirac’s strategy

X To start with KG eq. and then factorize.

P“P,—m’c* =0
* Consider only time part (p,_,)
(POP0 —m’c’ )= (PO +F mc)(PO - mc) =0

* Two first order equations
(PO — mc)z 0 or (PO + mc)z 0

* Either of these guarantees



x” ﬁ will happen if we include three (momentum)

components of P¥ as well
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X Multiplying out RHS

2 2

B py p, —meBp, —y*p,)-mc

X We don’t want any term linear in p. Choose B* ="
k, A
= PP, =7y piP,
* Find coefficient v

PP (P -

Vv pop, vV DD A7 Y D, 7Y PP,



* Further simplification
() - (P - (P2} - (P°) =
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=0 f=r=1 (F=(2F =(F =67 =1

to get rid of the cross-terms (7i v +y’ 7/i)

Brilliant idea
’F
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Anticommutator {yﬂyv+yvyﬂ}:2gﬂv =

0 not commuig_>

Minkowski metric
{1,'1,'1,'1"1}



* Define y matrices OJ:(O 1}

0 1 O i:[ 0 o* OJZC) _oij
! _EO —1] ’ -0’ 0 03=loj

0,1 and c'are 2x2 matrices

Y’s are 4x4 matrices

As a 4 x4 matrix equation, the relativistic energy
momentum equation can be easily factorize as

(P”P —m’c ) (,B pk+mc)(7/ pﬂ—mc) 0

T Dirac
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X Y must be 4-element column matrix

f 4 % o
N v, — Dirac Spinor
W, /bispinor
\¥4)

Y carries 4-components

But

Not 4-vectors

Does not transform under ordinary Lorentz transformation



How does ¥ transform




Bilinear Covariants

€¢ )

X If we go to a system moving with speed ‘v’ in
the x-direction, the transformation rule is

¥ Y =S¥ ﬂ,‘ PR




C h eCk it ! Its your first assignment

X Construct scalar quantity out of spinor ¥

v,
+ * * * * w
Y=l v v i)
WV,
| -
W, P

- ‘%‘z +‘W2‘2 +‘W3‘2 +":”4‘2
X Appling transformation rule

(4B), =(4B), = 4, B, = B, 4, = (BA),

(4B) =B*4*



* Applying the transformation on bilinear as

(vrw) = (¥) 9 -

(s )" (s ¥)
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X Introduce the adjoint spinor

Y=wy = (¥ - -
X Now construct relativistic invariant quantity as

P =90 =P, + |, |, [P,
X Study transformation

(Pw) =(9) 7' = (S%) ' (5)

0 : .. . . . -
/4 : Relativistically Lorentz invariant :



Need to know how ¥ transforms under parity?



Parity transformation
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* Under parity operation Dirac spinor transform as
\P P , \{JI _ 70\};
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* One can also make pseudoscalar out of ¥

(%05 ( o) = (w5") o
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Check it! Its your 2nd assignment

* Check the nature of following quantities under parity
transformation?

1. (?yﬂxp)

2. (Ty W)
3. (Porw)
where

o = %(y”yv ~7'7*)
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We only know ¥ superficially



http://www.qksrv.net/click-638662-10282844?SID=FGsample

What we need to know is

* Detailed structure of W

For this we have
to solve Dirac
equations




Solution to the Dirac equation

* We know
(ih7/ "0, —mc )\P;O ........... )
e
* For simple solution, assume ¥ is ‘P[ZJ
independent of position L
o _o¥ _o¥ _
ox Oy Oz

* State with zero momentum as

in , 0¥
—mc¥ =0
637 ot e Do =1h0;

p,=ihd,; u=0,123
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Upper 2 components
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E © Characteristic time dependence of
—i— quantum state with energy E. For a
e fi S _ particle at rest, | =m
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Good enough

What’s next



w(r, t) — aeg(Et_p'r)q?(E : p)»— ..............................
* In 4-vector notation .. Seied Diraceq
w(X)=aer " u(p)
* Consider Dirac equation .}:
(ihjfi 0, — mc)‘{’(X ) = O--::::::::fi212:::::::::: ---- '



X x dependence is confined to the exponent

ow(X)=a a{ei;(ﬂpﬂ))u@) ................................ |
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* Momentum space Dirac equation can be written

as.

(ylPl —mc)u =

C

/(E j \
— —mc — p.o

|
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X [n order to satisfy momentum space Dirac eq. we

ust have
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Guess what
do you get !
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Relativistic energy momentum relation enforces by
Dirac equation



Construct

4-independent solution to
Dirac equation
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*Do u,and u, describe an electron with
spin up and down?

X Do u;and u, describe positron with spin up and
down

Unfortunately thz;zs not the case!!!




Because

Xu;, u,, usand u,are not the eigenstate of
Dirac particles spin.

* Dirac particles spin matrices are

7 2_(0‘ 0
S=—¥Y, o ©O 0 o
2
Check
X e.g. u, is not eigenstate of 2, (S, # )
1 0 0 O
¢ _Ife. 03 1[0 -1 0 o0
200 o) 2/0 0 1 0
0 0 0 -1



How to Heal \

with this S

prob?e



Very simple Just to

e —————— e ——
e ———————————————————

X Orient the z-axis so that it points along the
direction of motion (p,= p,=0)

Then in this case

X uy, u,, u; & uyare eigenspinor of S,
X u; & uzare spin up

X u,& uyare spin down
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Interpretation problem
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Why?

X But we know all free particles must be alike and
carry +ev energy (wWhether these are positron or
electron ).

Solution

X -ev energy solution must be reinterpreted as +ev
energy antiparticle states

X Flip the sign of E & p in antiparticle state

X And get same solution to Dirac equation, with
correct physical interpretation



* Two spin states of positron with energy E and

momentum p

vw(E, p)=u,(-E,~p)=

v,(E, p)=—uy(- E,~p)

N
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c(p,—ip,)

E +mc’
—p,
E +mc’
0

1

cp,
E + mpz
c(p,+ip,)

E +mc?

/ Two spin states

of positron with
energy E &
momentum p

with

/5 = \/mzc4 + p’c’
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Oh No! am I missing something
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Wait don’t run, try it
and you can do it
yourself by using

following




Conclusion

e —————— o —e
e —————————

(7/4 P - mc)u —0 Particle

(}/ﬁ P, +m C)V —0 Anti-Particle



The Quintessence



The Feynman rules for QED
* Electron (¢)) || *Positron (e%)

A

W(X) _ ae_h(X.P)uS (P) ‘ Froe W(X) i aeh(X.P)v(P)

N\ 4

4 [N

(7/i P, —mc)u =0 Dl'mc' (7/’ /& +mc)v =0

A
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u (7/“ P, - mc) =0 Adjoint v (7/“ /& mc) =0

T2 =0 Orth gonall viv: =0

‘ —
uu — 2mc Normalized VYy = —277’16'
|

v

Zusﬁsz(ylpl+mc) :Completeness DV —(7/ Py- mC)

s=1,2

s=1,2




Hey! We are done with Dirac equation




Questions
are
guaranteed in
life;
Answers
arent.
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