

Quantum ElectroDynamics As I Look into it

Dr. Farida Tahir

Physics department CIIT, Islamabad

QED

Ingredients

- * Electrons, Positrons
- * Photons

Recipe

Dirac equation to describe electron and positron.

Maxwell equation for photon.

Transformation of the field representing a particle or system (symmetry concept/gauge invariance)

Result

Feynman diagrams (Tool/Device)

Out come of result

Quantum mechanical amplitudes based on perturbation theory to calculate cross-section

The rate for scattering processes

This is the Plan/Outline of my Lectures

* The Electrons

What do you know about electron?

Coloumbs Law

Yes!

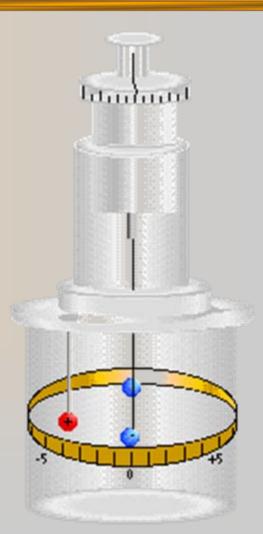
Coloumbs Law

$$F = \frac{kq_1q_2}{r^2}$$

* The Coloumbs interaction of two electrons at separation r is

$$E_{Coulomb} = \frac{e^2}{4\pi r}$$

Magnitude of electron charge



What's New in Old

Simple idea great information

* In High Energy Physics (HEP), $\hbar = c = 1$

$$M = [E][c]^{-2}$$
 $L = [\hbar][c][E]^{-1}$ $T = [\hbar][E]^{-1}$

*Length and reciprocal Energy has the same dimension

$$Er = \frac{e^2}{4\pi} \equiv \alpha = \frac{1}{137.03604} = 0.0073$$

Strength of the interaction between two electrons

dimensionless

Sommerfeld fine structure constant

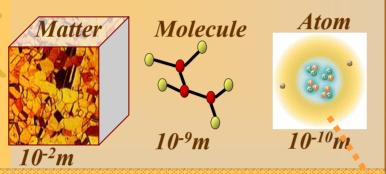
0.000053

Let's start our formal journey

Novel Idea

There must be some set of smallest constituent parts, which are the building blocks of all matter.

Weinberg Reduction Approach

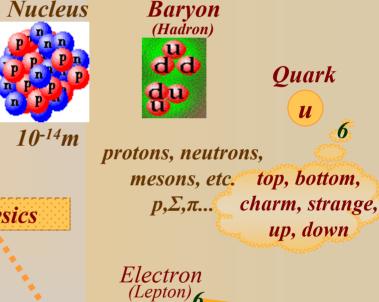


Condensed matter/Nano-Science/Chemistry

Atomic Physics

Thanks to **experimentalists**we are able to say some thing
about

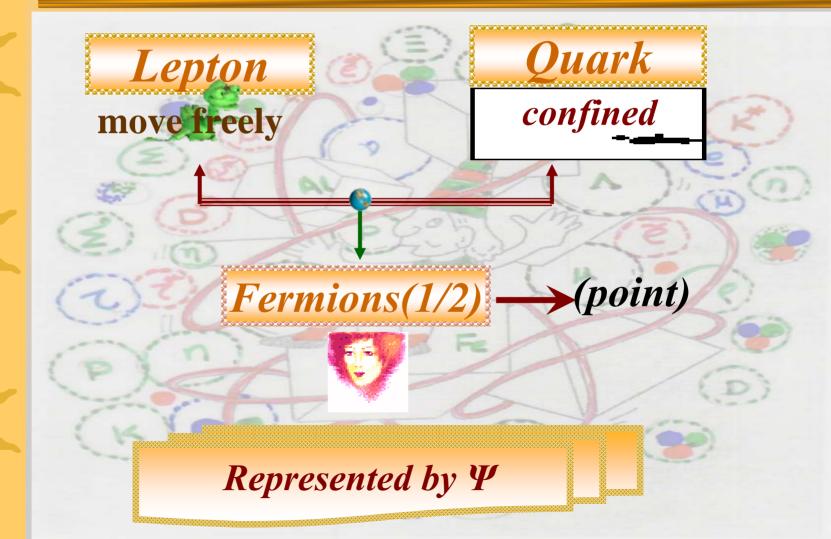
"Set of smallest constituents of matter"



High Energy Physics

~ $10^{-18}m$ Electron, Muon , tau v_e , v_μ , $v_{ au}$

Building Blocks Of Matter



Frame work

Quantum
Mechanics
Mechanics
Very, small

Relativistic Mechanics very fast

$$p = \frac{h}{\lambda}$$

Quantum Field Theory

$$E^2 - p^2 c^2 = m^2 c^4$$

$$E \to i\hbar \frac{\partial}{\partial t}$$

$$P^{\mu} = (E, p)$$

$$p \to -i\hbar \nabla = -i\hbar \frac{\partial}{\partial x}$$

$$P^{\mu} = i\hbar \partial_{\cdot}^{\mu} \qquad \Rightarrow \qquad \Rightarrow \qquad \Rightarrow$$

Klein-Gordon Equation

* Relativistic Energy-momentum relation

$$E^2 - p^2 c^2 = m^2 c^4$$

* In four vector notation

$$P^{\mu}P_{\mu} - m^2c^4 = 0$$

$$\left(-\hbar^2 \partial_{\mu}^{\mu} \partial_{\mu} - m^2 c^2\right) \Psi = 0$$

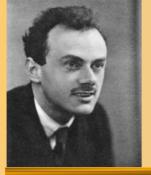
 $(-\hbar^2 \partial_{\mu}^{\mu} \partial_{\mu} - m^2 c^2) \Psi = 0$ ***** In time space component form

$$-\frac{1}{c^2} \left(\frac{\partial^2 \Psi}{\partial t^2} \right) + \nabla^2 \Psi = \left(\frac{mc}{\hbar} \right)^2 \Psi$$

2nd order in time

Comment on Klein-Gordon Eq

- * Schrodinger discoverd this eq. before nonrelativistic (which is on his name)
- **★** But, rejected due to non-compatibility with statistical interpretation of \(\Psi \).
- * Pauli and Weisskopf (1934) showed that the statistical interpretation itself has flaw in relativistic quantum theory.
- * Restored the Klein-Gordon equation to it rightful place.
- * Keep Dirac equation for spin ½ particles



Dirac's strategy

* To start with KG eq. and then factorize.

$$P^{\mu}P_{\mu} - m^2c^4 = 0$$

* Consider only time part $(p_{i=0})$

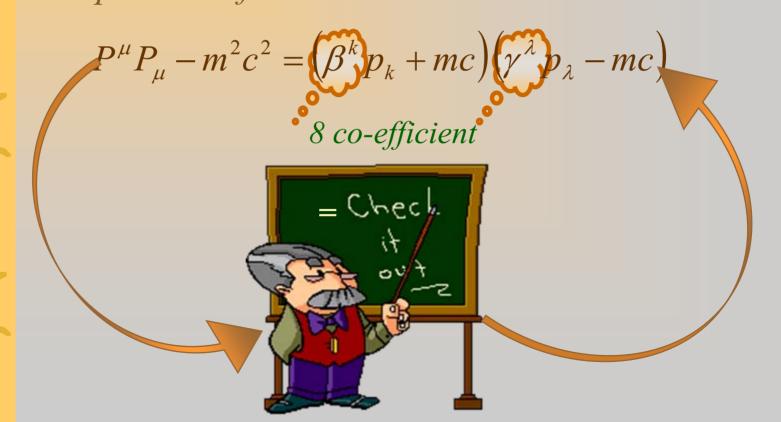
$$(P^{0}P_{0}-m^{2}c^{2})=(P^{0}+mc)(P_{0}-mc)=0$$

★ Two first order equations

$$(P^0 - mc) = 0$$
 or $(P^0 + mc) = 0$

★ Either of these guarantees

* will happen if we include three (momentum) components of P^{μ} as well



* Multiplying out RHS

$$\beta^{k} p_{k} \gamma^{\lambda} p_{\lambda} - mc (\beta^{k} p_{k} - \gamma^{\lambda} p_{\lambda}) - m^{2} c^{2}$$

* We don't want any term linear in p. Choose $\beta^k = \gamma^{\lambda}$

$$\Rightarrow P^{\mu}P_{\mu} = \gamma^{k}\gamma^{\lambda}p_{k}p_{\lambda}$$

* Find coefficient γ^{λ}

$$(P^0)^2 - (P^1)^2 - (P^2)^2 - (P^3)^2 =$$

$$\gamma^0 \gamma^{\lambda} p_0 p_{\lambda} + \gamma^1 \gamma^{\lambda} p_1 p_{\lambda} + \gamma^2 \gamma^{\lambda} p_2 p_{\lambda} + \gamma^3 \gamma^{\lambda} p_3 p_{\lambda}$$

* Further simplification

$$(p^{0})^{2} - (p^{1})^{2} - (p^{2})^{2} - (p^{3})^{2} =$$

$$= (\gamma^{0})^{2} (p_{0})^{2} + (\gamma^{1})^{2} (p_{1})^{2} + (\gamma^{2})^{2} (p_{2})^{2} + (\gamma^{3})^{2} (p_{3})^{2}$$

$$+ (\gamma^{0} \gamma^{1} + \gamma^{1} \gamma^{0}) p_{0} p_{1} + (\gamma^{0} \gamma^{2} + \gamma^{2} \gamma^{0}) p_{0} p_{2}$$

$$+ (\gamma^{0} \gamma^{3} + \gamma^{3} \gamma^{0}) p_{0} p_{3} + (\gamma^{1} \gamma^{2} + \gamma^{2} \gamma^{1}) p_{1} p_{2}$$

$$+ (\gamma^{1} \gamma^{3} + \gamma^{3} \gamma^{1}) p_{1} p_{3} + (\gamma^{2} \gamma^{3} + \gamma^{3} \gamma^{2}) p_{2} p_{3}$$

* One could pick $\gamma^0 = 1$ and $\gamma^1 = \gamma^2 = \gamma^3 = i$

$$\Rightarrow (\gamma^0)^2 = (1)^2 = 1 \qquad (\gamma^1)^2 = (\gamma^2)^2 = (\gamma^3)^2 = (i)^2 = -1$$

to get rid of the cross-terms $(\gamma^i \gamma^j + \gamma^j \gamma^i)$

Brilliant idea

$$\gamma^i \gamma^j + \gamma^j \gamma^i = 0 \quad \forall \quad i \neq j$$

E Matrices?

Anticommutator
$$\left\{ \gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} \right\} = 2g^{\mu\nu}$$

Minkowski metric {1,-1,-1,-1} Do not commute

★ Define γ matrices

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} \qquad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

0,1 and σ^i are 2×2 matrices

 γ 's are 4×4 matrices

As a 4×4 matrix equation, the relativistic energy momentum equation can be easily factorize as

$$(P^{\mu}P_{\mu}-m^{2}c^{2})=(\beta^{k}p_{k}+mc)(\gamma^{\lambda}p_{\lambda}-mc)=0$$

Let the result act on wave function

know

$$(i\hbar\gamma^{\lambda}\partial_{\lambda}-mc)\Psi=0$$

* Y must be 4-element column matrix

Ψ carries 4-components

But

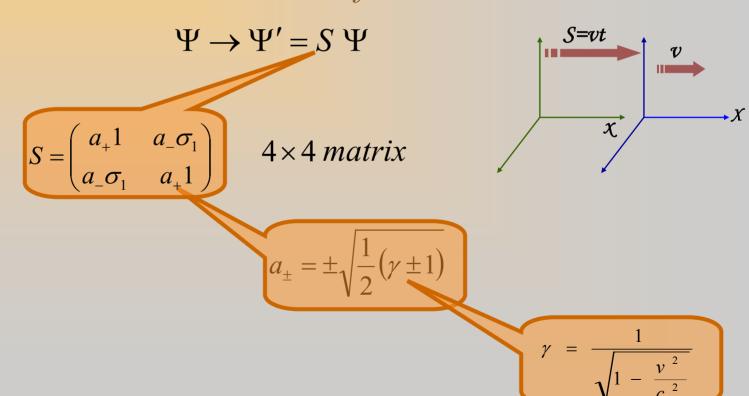
Not 4-vectors

Does not transform under ordinary Lorentz transformation

How does Y transform

Bilinear Covariants

* If we go to a system moving with speed "v" in the x-direction, the transformation rule is



Check it! Its your first assignment

* Construct scalar quantity out of spinor Y

$$\Psi^{+}\Psi = \begin{pmatrix} \psi_{1}^{*} & \psi_{2}^{*} & \psi_{3}^{*} & \psi_{3}^{*} \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{pmatrix}$$
Not scalar

$$= |\psi_1|^2 + |\psi_2|^2 + |\psi_3|^2 + |\psi_4|^2$$

* Appling transformation rule

$$(AB)_{ij} = (AB)_{ji} = A_{jk}B_{ki} = \widetilde{B}_{ik}\widetilde{A}_{kj} = (\widetilde{B}\widetilde{A})_{ij}$$
$$(AB)^{+} = B^{+}A^{+}$$

* Applying the transformation on bilinear as

$$(\Psi^{+}\Psi)' = (\Psi')^{+}\Psi'$$

$$(S\Psi)^{+}(S\Psi)$$

$$\Psi' = S\Psi$$

$$\Psi^{+}S^{+}S\Psi$$

$$S^{2} = \gamma \begin{pmatrix} 1 & -\frac{v}{c}\sigma_{1} \\ -\frac{v}{c}\sigma_{1} & 1 \end{pmatrix} \neq 1$$

What to do?

★ *Introduce the adjoint spinor*

$$\overline{\Psi} = \Psi^+ \gamma^0 = \left(\Psi_1^* \ \Psi_2^* - \Psi_3^* - \Psi_4^* \right)$$

* Now construct relativistic invariant quantity as

$$\overline{\Psi}\Psi = \Psi^{+}\gamma^{0}\Psi = |\Psi_{1}|^{2} + |\Psi_{2}|^{2} - |\Psi_{3}|^{2} - |\Psi_{4}|^{2}$$

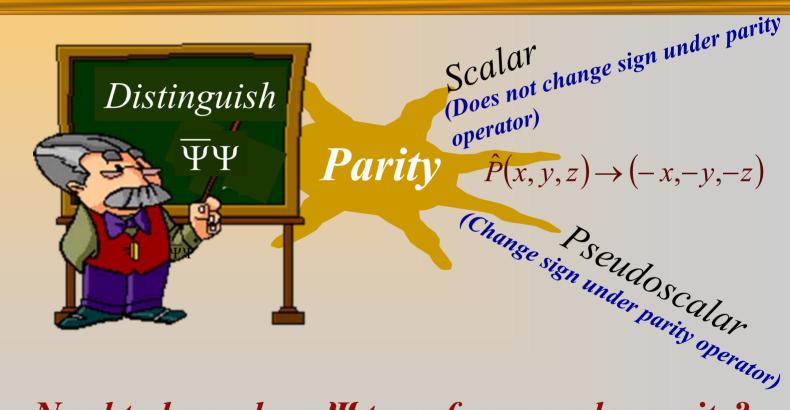
* Study transformation

$$(\overline{\Psi}\Psi)' = (\Psi')^{+} \gamma^{0} \Psi' = (S\Psi)^{+} \gamma^{0} (S\Psi)$$

$$=\Psi^{+}S^{+}\gamma^{0}S\Psi=\Psi^{+}\gamma^{0}\Psi=\overline{\Psi}\Psi$$

Relativistically Lorentz invariant

Nature of $\overline{\Psi}\Psi$



Need to know how \mathbb{\Psi} transforms under parity?

Parity transformation

*** Under parity operation Dirac spinor transform as**

$$\Psi \xrightarrow{\hat{P}} \Psi' = \gamma^{0} \Psi$$

$$(\overline{\Psi}\Psi) \xrightarrow{\hat{P}} (\overline{\Psi}\Psi)' = (\Psi^{+}\gamma^{0}\Psi)' = \Psi^{+'}\gamma^{0'}\Psi'$$

$$= (\gamma^{0}\Psi)^{+}\gamma^{0}(\gamma^{0}\Psi)$$

$$= \Psi^{+}\gamma^{0^{+}}\gamma^{0}\gamma^{0}\Psi$$

$$= \Psi^{+}\gamma^{0}\Psi$$

$$= (\overline{\Psi}\Psi)$$
invariant under parity

★ One can also make pseudoscalar out of Ψ

$$(\overline{\Psi}\gamma^{5}\Psi) \xrightarrow{\hat{P}} (\overline{\Psi}\gamma^{5}\Psi)' = (\Psi^{+}\gamma^{0})'\gamma^{5}'\Psi'$$

$$= (\gamma^{0}\Psi)^{+}\gamma^{0}\gamma^{5}(\gamma^{0}\Psi)$$

$$= \Psi^{+}\gamma^{0^{+}}\gamma^{0}\gamma^{5}\gamma^{0}\Psi$$

$$= \Psi^{+}\gamma^{5}\gamma^{0}\Psi = -\Psi^{+}\gamma^{0}\gamma^{5}\Psi$$

$$= -(\overline{\Psi}\gamma^{5}\Psi)$$

change sign under parity psudoscalar

Check it! Its your 2nd assignment

* Check the nature of following quantities under parity transformation?

1.
$$\left(\overline{\Psi}\gamma^{\mu}\Psi\right)$$

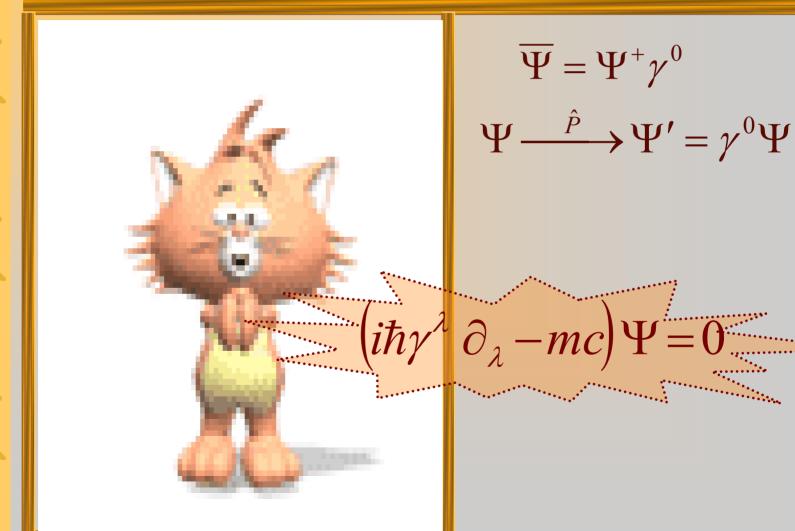
2.
$$(\overline{\Psi}\gamma^{\mu}\gamma^{5}\Psi)$$

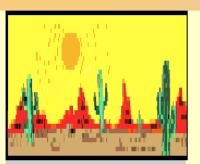
3.
$$(\overline{\Psi}\sigma^{\mu\nu}\Psi)$$

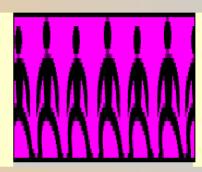
where

$$\sigma^{\mu\nu} = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right)$$

Now we know







We only know Y superficially

What we need to know is

★Detailed structure of Ψ

For this we have to solve Dirac equations

Solution to the Dirac equation

* We know

$$\left(i\hbar\gamma^{\lambda}\partial_{\lambda}-mc\right)\Psi=0 \qquad (1)$$

★ For simple solution, assume Ψ is independent of position

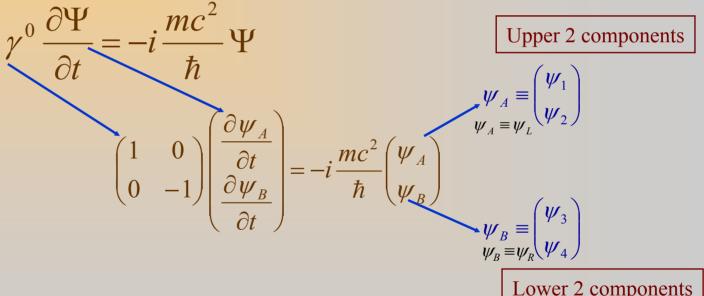
$$\frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial y} = \frac{\partial \Psi}{\partial z} = 0$$

* State with zero momentum as

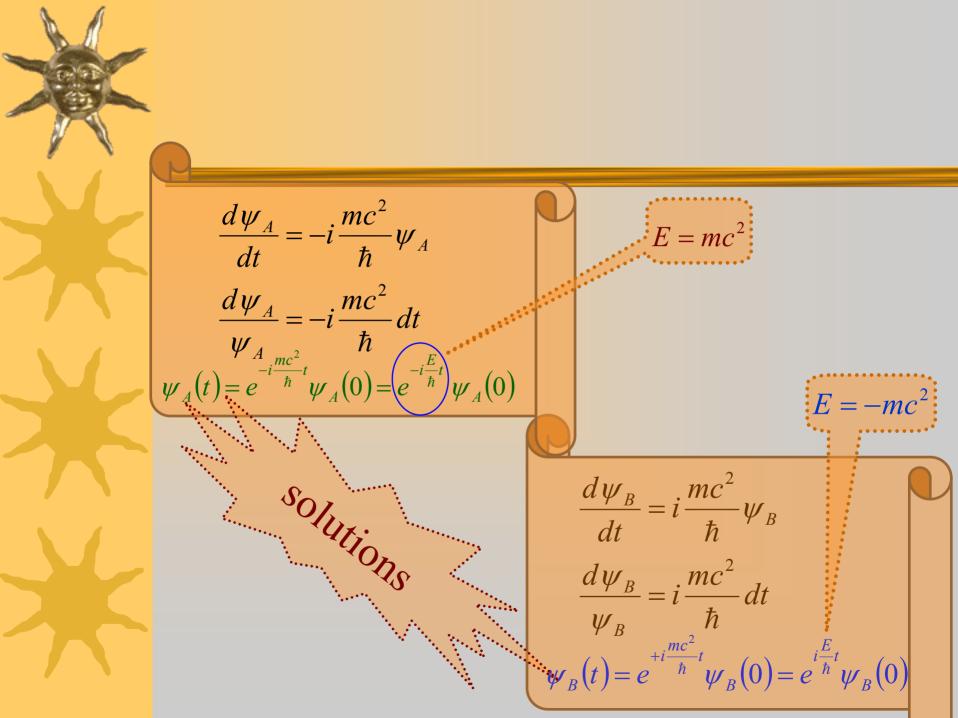
$$\frac{i\hbar}{c}\gamma^0 \frac{\partial \Psi}{\partial t} - mc\Psi = 0$$

$$p_{\mu} = i\hbar\partial_{\mu}; \quad \mu = 0,1,2,3$$
$$p_{0} = i\hbar\partial_{0};$$

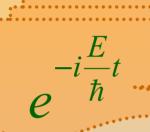
* simplify



Lower 2 components

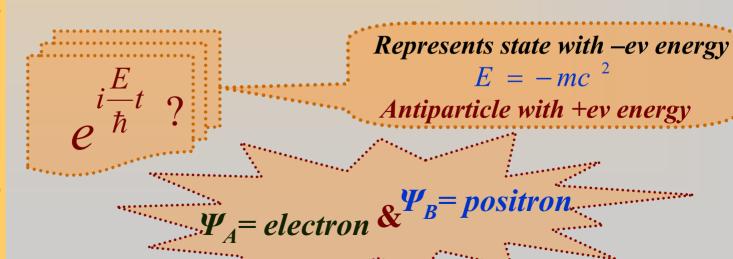


Closer look of solutions



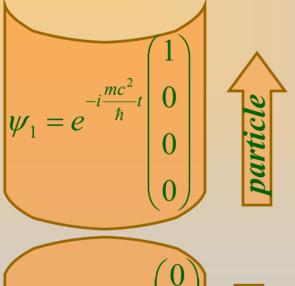
Characteristic time dependence of quantum state with energy E. For a particle at rest, $E = mc^2$

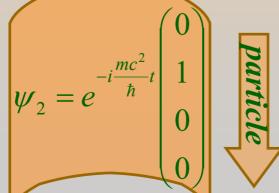
 Ψ_A is exactly what we should have expected if p = 0

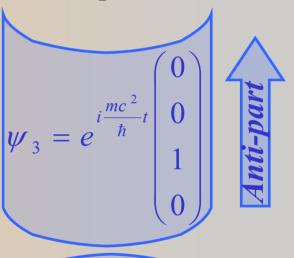


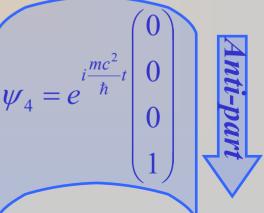
What we learn

 \star Dirac equation with p = 0 admits four independent solutions









Good enough

What's next

* Plane wave solution when $p \neq 0$

Bispinor

$$\psi(r,t) = ae^{\frac{-i}{\hbar}(Et-p.r)}\dot{u}(E,p)$$

* In 4-vector notation

Satisfied Dirac eq

$$\psi(X) = ae^{\frac{-i}{\hbar}(X.P)}u(P)$$

* Consider Dirac equation

$$(i\hbar \gamma^{\lambda} \partial_{\lambda} - mc)\Psi(X) = 0$$

$$(i\hbar \gamma^{\lambda} \partial_{\lambda} - mc) a e^{\frac{-i}{\hbar}(X.P)} u(P) = 0$$

* x dependence is confined to the exponent

$$\partial_{\lambda}\psi(X) = a \partial_{\lambda} \left(e^{\frac{-i}{\hbar} \left(X^{\lambda} P_{\lambda} \right)} \right) u(P)$$

$$\partial_{\lambda}\psi(X) = \frac{-i}{\hbar} P_{\lambda} a e^{\frac{-i}{\hbar}(X^{\lambda} P_{\lambda})} u(P)$$

 $(\gamma^{\lambda} P_{\lambda} - mc)u(P) = 0$

focus

Momentum space
Dirac equation

$$\gamma^{\lambda} P_{\lambda} = \gamma^{0} P_{0} - \gamma^{i} P_{i} = \frac{E}{c} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - p \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix}$$

* Momentum space Dirac equation can be written as:

$$(\gamma^{\lambda} P_{\lambda} - mc)u = \begin{pmatrix} \frac{E}{c} - mc \\ p.\sigma \end{pmatrix} - p.\sigma \\ \begin{pmatrix} -\frac{E}{c} - mc \\ \end{pmatrix} \begin{pmatrix} u_{A} \\ u_{B} \end{pmatrix} = 0$$
Lower 2 components

* In order to satisfy momentum space Dirac eq. we must have

$$\left(\frac{E}{c} - mc\right)u_A - p.\sigma u_B = 0$$

$$u_A = \frac{c}{E - mc^2}(p.\sigma)u_B$$

$$\left(\frac{E}{c} + mc\right)u_B + p.\sigma u_A = 0$$

$$u_B = \frac{c}{(p.\sigma)}u_A$$

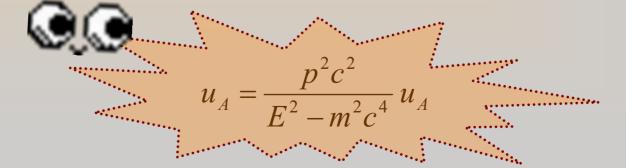
$$u_B = \frac{c}{E + mc^2} (p.\sigma) u_A$$

Calculate $(p.\sigma)^2$

$$p.\sigma = p_x \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + p_y \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + p_z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$p.\sigma = \begin{pmatrix} p_z & (p_x - ip_y) \\ (p_x + ip_y) & -p_z \end{pmatrix}$$

$$(p.\sigma)^2 = \begin{pmatrix} p_x^2 + p_y^2 + p_z^2 & 0 \\ 0 & p_x^2 + p_y^2 + p_z^2 \end{pmatrix} = p^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



Guess what do you get!

Fascinating fact

$$\frac{p^2c^2}{E^2 - m^2c^4} = 1$$

$$E^2 - m^2 c^4 = p^2 c^2$$

Particle state

$$E^2 = \pm \sqrt{m^2 c^4 + p^2 c^2}$$

Anti-Particle state

Relativistic energy momentum relation enforces by Dirac equation

Construct

4-independent solution to Dirac equation

Evidently particle state

* 4-independent solution to Dirac equation

1.
$$Pick$$
 $u_A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$u_B = \frac{c}{E + mc^2} (p.\sigma) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$u_{B} = \frac{c}{E + mc^{2}} \begin{pmatrix} p_{z} & p_{x} - ip_{y} \\ p_{x} + ip_{y} & -p_{z} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$u_B = \frac{c}{E + mc^2} \begin{pmatrix} p_z \\ p_x + ip_x \end{pmatrix}$$

Evidently particle state

* 4-independent solution to Dirac equation

2.
$$Pick$$
 $u_A = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$u_B = \frac{c}{E + mc^2} (p.\sigma) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$u_{B} = \frac{c}{E + mc^{2}} \begin{pmatrix} p_{z} & p_{x} - ip_{y} \\ p_{x} + ip_{x} & -p_{z} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$u_{B} = \frac{c}{E + mc^{2}} \begin{pmatrix} p_{x} - ip_{y} \\ -p_{z} \end{pmatrix}$$

Evidently Antiparticle state

* 4-independent solution to Dirac equation

3.
$$Pick$$
 $u_B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$u_{A} = \frac{c}{E - mc^{2}} (p.\sigma) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$u_{A} = \frac{c}{E - mc^{2}} \begin{pmatrix} p_{z} & p_{x} - ip_{x} \\ p_{x} + ip_{y} & -p_{z} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

*E must - ev*otherwise $p \rightarrow 0 \Rightarrow u_A \rightarrow \infty$

$$u_A = \frac{c}{E - mc^2} \begin{pmatrix} p_z \\ p_x + ip_y \end{pmatrix}$$

Evidently Antiparticle state

* 4-independent solution to Dirac equation

4.
$$Pick$$
 $u_B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$u_{A} = \frac{c}{E - mc^{2}} (p.\sigma) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$u_{A} = \frac{c}{E - mc^{2}} \begin{pmatrix} p_{z} & p_{x} - ip_{x} \\ p_{x} + ip_{y} & -p_{z} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

*E must - ev*otherwise $p \to 0 \Rightarrow u_A \to \infty$

$$u_A = \frac{c}{E - mc^2} \begin{pmatrix} p_x - ip_y \\ -p_z \end{pmatrix}$$

Summary

* 4-detailed solutions are

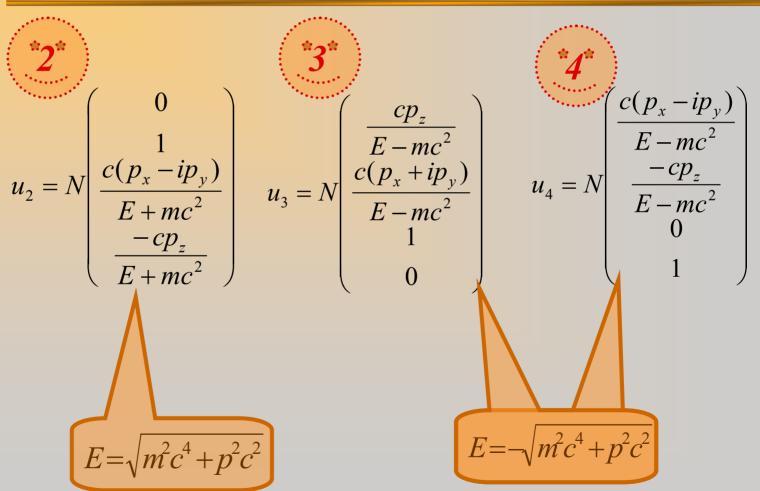
$$u_1 = N \begin{pmatrix} u_A \\ u_B \end{pmatrix}$$

Pick
$$u_A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 then $u_B = \frac{c}{E + mc^2} \begin{pmatrix} p_z \\ p_x + ip_y \end{pmatrix}$

$$u_{1} = N \left(\frac{cp_{z}}{\frac{cp_{z}}{E + mc^{2}}} \right)$$

$$\frac{c(p_{x} + ip_{y})}{\frac{c(p_{x} + ip_{y})}{E + mc^{2}}} \right)$$

$$E = \sqrt{m^2c^4 + p^2c^2}$$



What is your Opinion?

- *Do u₁ and u₂ describe an electron with spin up and down?
- *Do u₃ and u₄ describe positron with spin up and down

Unfortunately this is not the case!!!

Because

- $\star u_1, u_2, u_3$ and u_4 are not the eigenstate of Dirac particles spin.
- * Dirac particles spin matrices are

$$S = \frac{\hbar}{2} \Sigma$$

Check

* e.g. u_1 is not eigenstate of $\Sigma_z (S_z u_1 \neq u_1)$

$$S_{z} = \frac{1}{2} \begin{pmatrix} \sigma_{z} & 0 \\ 0 & \sigma_{z} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

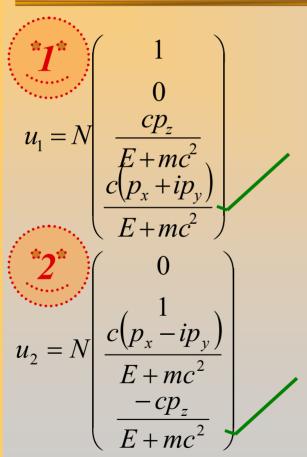
Very simple Just to

* Orient the z-axis so that it points along the direction of motion $(p_x = p_v = 0)$

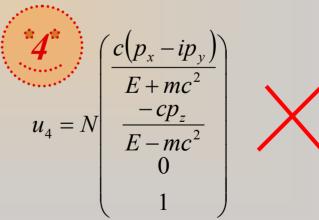
Then in this case

- * u_1 , u_2 , u_3 & u_4 are eigenspinor of S_z
- * $u_1 \& u_3$ are spin up
- * $u_2 & u_4$ are spin down

Interpretation problem



$$u_{3} = N \left(\frac{cp_{z}}{E - mc^{2}} c(p_{x} + ip_{y}) \frac{c(p_{x} + ip_{y})}{E - mc^{2}} \right)$$



Why?

* But we know all free particles must be alike and carry +ev energy (whether these are positron or electron).

Solution

- *-ev energy solution must be reinterpreted as +ev energy antiparticle states
 - \star Flip the sign of E & p in antiparticle state
- * And get same solution to Dirac equation, with correct physical interpretation

* Two spin states of positron with energy E and momentum p

$$v_1(E, p) \equiv u_4(-E, -p) = N$$

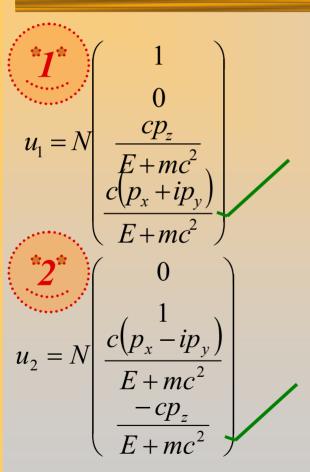
$$\begin{cases} \frac{c(p_x - ip_y)}{E + mc^2} \\ \frac{-cp_z}{E + mc^2} \\ 0 \\ 1 \end{cases}$$

Two spin states of positron with energy E & momentum p with

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

$$v_{2}(E,p) = -u_{3}(-E,-p) = -N \begin{cases} \frac{cp_{z}}{E+mc^{2}} \\ \frac{c(p_{x}+ip_{y})}{E+mc^{2}} \\ 1 \\ 0 \end{cases}$$

4-solutions with correct interpretation



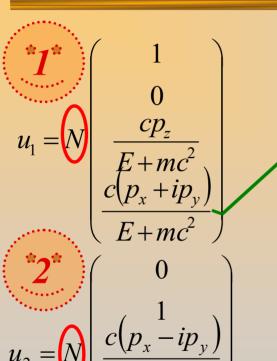
$$v_1(E, p) = N \begin{cases} \frac{c(p_x - ip_y)}{E + mc^2} \\ \frac{-cp_z}{E + mc^2} \\ 0 \\ 1 \end{cases}$$

$$v_{2}(E,p) = -N \begin{cases} \frac{cp_{z}}{E + mc^{2}} \\ \frac{c(p_{x} + ip_{y})}{E + mc^{2}} \\ 1 \\ 0 \end{cases}$$

Oh No! am I missing something

W

4-solutions with correct interpretation



$$v_{1}(E,p) = N \begin{pmatrix} \frac{c(p_{x} - ip_{y})}{E + mc^{2}} \\ \frac{-cp_{z}}{E + mc^{2}} \\ 0 \\ 1 \end{pmatrix}$$

$$v_{2}(E,p) = -N \begin{cases} \frac{cp_{z}}{E + mc^{2}} \\ \frac{c(p_{x} + ip_{y})}{E + mc^{2}} \\ 1 \\ 0 \end{cases}$$

Normalization constant N

Wait don't run, try it and you can do it yourself by using following

$$u = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} \qquad u^+ = \begin{pmatrix} \alpha^* & \beta^* & \lambda^* & \delta^* \end{pmatrix}$$

$$u^{+}u = \left(\left|\alpha\right|^{2} \quad \left|\beta\right|^{2} \quad \left|\lambda\right|^{2} \quad \left|\delta\right|^{2}\right)$$

Conclusion

$$\left(\gamma^{\lambda} P_{\lambda} - mc\right)u = 0$$

Particle

$$\left(\gamma^{\lambda} P_{\lambda} + mc\right) v = 0$$

Anti-Particle

The Quintessence

The Feynman rules for QED

$*Electron (e^-)$ *Positron (e⁺) $\psi(X) = ae^{\frac{-i}{\hbar}(X.P)}u^{s}(P)$ Free $\psi(X) = ae^{\frac{i}{\hbar}(X.P)}v(P)$ $(\gamma^{\lambda} P_{\lambda} - mc)u = 0 \qquad Dirac \qquad (\gamma^{\lambda} P_{\lambda} + mc)v = 0$ $\overline{u}(\gamma^{\lambda} P_{\lambda} - mc) = 0 \qquad Adjoint \qquad \overline{v}(\gamma^{\lambda} P_{\lambda} + mc) = 0$ $\overline{u}^1 u^2 = 0 \quad Orthogonal \quad \overline{v}^1 v^2 = 0$ $\overline{u}u = 2mc$ Normalized $\overline{v}v = -2mc$ $\sum_{s=1,2} u^s \overline{u}^s = (\gamma^{\lambda} p_{\lambda} + mc)$ Completeness $\sum_{s=1,2} v^s \overline{v}^s = (\gamma^{\lambda} p_{\lambda} - mc)$

Hey! We are done with Dirac equation

