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Space Time Symmetries

Bilateral Symmetry (Space Reflection Invariance) is not
universal; it is violated by fundamental laws governing weak
interactions, while respected by all other interactions
(electromagnetic, strong, gravitational).

We have positively charged proton and negatively charged
electron in nature. Negative proton and positive electron do
not exist in nature.

Dirac, by unifying the special theory of relativity with
quantum mechanics, predicted the existence of antimatter
viz. negatively charged antiproton and positively charged
antielectron.

Invariance under Charge Conjugation (particle =
antiparticle) is also violated by weak interactions but
respected by all other interactions.



@ To understand the preponderance of matter in the universe

is a subject actively pursued in cosmology with input from
particle physics.

Time is measured while passing, we have present, present
past and present future. There is no evidence that time
reversal is violated by the fundamental laws of nature. Still
In our consciousness, we distinguish between past and
future. Past is known, future is unknown, uncertain.

Our present actions determine the future but still
uncertainty is there.

The first person who ever thought about time was Saint
Augustine in the 4th century. He asked himself the
question, “What was God doing before he created the
universe?” His answer was: God dwells in eternity. Nothing
moves into the past; all was present, there was no before.
Time begins with the creation of universe - an answer not
different from the one given by big bang theory.



Continuous Symmetries

The rotational symmetry in geometry is formulated in terms of
group of rotations around a point O in a plane or around an axis
In space. In plane geometry, finite groups of rotations are of two

kinds:

@ The group consisting of the reptititions of a single proper
rotation by an angle ¢ = @ (n=1.2,3...) called the cyclic
group C,.

@ The group of these rotations combined with the reflections
In n axes forming angles #/2 called dihedral group D,.

For ornamental pattern in art as well as in crystals, there are no
other rotational symmetries except those of order 2, 3, 4 and 6.
Some examples of these symmetries are shown in the following
figures. However, one can find pentagonal symmetries in
organic world.



of Nature

The structure of space-time is also revealed by the symmetries
of laws of nature. In quantum mechanics, a transformation is
associated with an operator (unitary):

uu'=1=U'U, U =U"
U can be written as U = gi<F . Unitarity of U implies F is
Hermitian: FT = F.

Fundamental law of Quantum Mechanics is given by the
Schrodinger equation:

0
i |(1)) = HIw(t))
A formal solution of this equation is

U(t)) = e ""y(0))



Average value of an operator A is defined as:

2y = ((1)|AlU(t))
= (u(t)| "M AT My (1))
= (P|A(t)|1h) = ay(t)
/2\(1‘) _ e—|—fH!,’.’i/a(0)e—fH!/h
In particular H(t) = et™/2H(0)e "M/ = H(0) = H

9. ,
ih=-A(t) = [A(t), H]

This is the Heisenberg picture. We can move from one picture to
the other picture by unitary transformation. A(t): Time
Translated Operator.

|f [ﬁ\(t)ﬁ H] = 0, then A is time independent and its eigenvalues
are constant of motion. Since eigenvalues are possible result of
measurement, this implies that an experiment done now or in



the past would give the same result under same conditions.
(Translational Symmetry in Time: Conservation of Energy

H(t) = H)

We formulate the invariance principle in a general way. Consider
a transition from an initial state |/) to a final state |f). This
transition is described by matrix elements (f|S|i):

(f|S|iy = (FIUTUSUT Uiy = (fY|USUT|iY)

Yy and |[fY) are transferred states: Above equation is an identity.
However, if

USU" = S then (f|S|i) = (fY|S|iY)

This implies that the result of experiment remains unchanged
when the states are transformed (invariance principle):

USU =S =1[U,S1=0 or [UH =0



l.,e. S matrix commutes with U. For infinitesimal unitary
transformation,

U=1+ieF=[F,S]=0

Invariance means that generator of transformation commutes
with S-matrix or the Hamiltonian. F is Hermitian and thus
observable. Its eigenvalues are real.

F|Fi) = FilF)
(FF|[S. F1|Fi) = (Fi — F7)(F:|S|F;) =0

Hence F; = F; if (F#|S|F;i) £ 0.
Invariance implies conservation law, i.e. eigenvalues of F
remain unchanged.



Example 1: Translation in Space
For simplicity, we consider one dimensional case. The
generalization to 3D is straightforward. Consider the translation

X — X + a. Associated with this translation is a unitary operator
Uy = ebarn,

Urlx) = |x —a), Uix)=|x+ a)
Urlw) = [7).

P1(x) = (x|&") = (x|Ur|)
= (x +alY) =v(x+a)

WT(x) = (X[UT) = ¥(x) + @y i(x)

= (x| + a (x|y)



But

(X|0TY) = (x|Urleb) = (x]) + <x|"pa|w>

n .
= —h—
P 1704

Hence momentum operator is generator of the translation.
UpxUL = X + a

If [0, H] = 0 or [p, S] = 0, then momentum is conserved, i.e.
translational invariance implies conservation of momentum. In
3D, X

UDXLﬁ = )? a

Thus we have

A(X + @) = etPAmA(X) e~ Pa/n



We have already noted that A(t + 7) = e H/mA(t)e=HT/",
Introduce 4-vector (h=c=1)

Pt =(H.p), P,=(H, —p)

EEP“H# _ efHTe—f,ﬁ-E

A(x +

a) — E+fP.ajhﬁ(X)e—fF-ajh

For any field operator ¢(x), we have

o(x) = eF*p(0)e
o 6(x) = [6(x), P

—iP-x

P! = Generator of Spacetime Translation



Example 2: Rotation in Space
Under rotation x; = Hjix;
The length of a vector remains unchanged. Then,

X% = x;x; = RjRuXixx

= (R")wi( R) XX
= XjXj = X*

provided

(R")ki(R)j = dj
R"R=RR" =1 (Orthogonal transformation)

For infinitesimal rotation &:



Corresponding to rotation, there is a unitary operator Ug:

Ugly) = [7)
Unl%) = |X + @ x %)
V(X)) = (X|Uplv) = (X — & x X[v)

— (1 — i@ L/h)(X)

Ug = o—i@-L/h

Hence the angular momentum is generator of rotation. In

general,

Up = g—i@-J/h



where angular momentum J satisfies the commutation relation

[J, u{‘,] — fﬁE;kak: J:|: — J1 T J'Jg
(U, J_]=2hds,  [P.ds]=0, [ de] ==2hdy
So=Ji+ Jp+ J;

J is the generator of rotation group O,. Rotational invariance
means [J, H] =0, [J, S] = 0. Hence, rotational invariance
implies conservation of angular momentum.



Lorentz Transformation

Contravariant Vector: x* = (x°, x') = (c¢t, X)
Covariant Vector: x, = (xo0, X;) = (ct, —X)

xt = g'x,, Xy = GuuvX”
g#b':g”y:dfag(_l_‘la_‘la_‘la_‘l): g&":_éf

Lorentz Transformations
. v " I
xF=NMNX",x, =N/X,

leave
X, x* = xxp + x'x; = c?t? — X?

invariant, i.e. x'#x, = x"x,.

NENS, = 5)
NN, = goo



For infinitesimal Lorentz transformations,

NE = ot 4 e

A A
ET; — Q'” EAv s Cpur — Q;.-,J.E“: Cur — —Cup
o _ ., _ i __ i
€ = Vi=V = —€
i A
= —-s,;;kwk = E'["kwk

Associated with Lorentz transformation there is a unitary

operator: U = &/2«M* M1 are generators of Lorentz group
and M,, = —M

VL.
There are six generators in total:

@ 3 correspond to rotations.
@ 3 correspond to Lorentz boosts.



MT — ek gy — ek gk

M{f — Eﬁka — Mﬂr‘
Ao — Kf — __ Mo
cwMP’ = 20 - K — 235 -J

| — o i@J—i7-K

Rotation group Is subgroup of Lorentz group.

Basic equations incorporating physical laws can be expressed in
covariant form so that form of equation is frame independent.



Relativistic Quantum Mechanics

Under Lorentz transformation, a field operator transforms as:

Y(x) — (X)) = Si(x)
= Sy(A'x")

Y(x) = S(A7x)
' (x) = Up(x)UT = Syp(A~'x)

Using infinitesimal transformation:

/
I
S=1— T,

we get
(M, (X)] = —[Luw + 0 ](X)



where

L., = i(x.,0, —X,0,) (Orbital Part)

1
y

[y E G'pu

(for Dirac Spinor)

For Dirac spinor,

My (3] = [ + 501000

Dirac equation: (i4*9, — m)i(x) = 0.



antiparticle. 4*s are 4 x 4 Dirac matrices:

{7 = 29"

5

Dirac spinor ¢ describes the spin 1/2 particle along with its
i

e f ey
ohV = 5[’}““,7 ]
= i1y AP+ =0
/
S=1-— ZE”FJ“V
Y = Piy°
Dirac bilinears are:

S—1x st
P (x) = SY(Ax)
(X)) =P(x)S

Y (x') = Si(x)

/=1 0
=1 0o 1

D), Py, iy, Py, patt e
In the Weyl representation of + matrices,

/0 1
0= 11 0



(1/2,0) : [J.¢] = —

(0,1/2): [J.va] = —5Fvn, (K. val = —550n




Discrete Symmetries

Space Reflection, P: x — —X

U(X, 1) — &' (=X, t) = 71%U(X, 1)
"'I’()?: t) H’d—*"r(_ ) ( :t}

Charge Conjugation, C: particle — antiparticle

v — = CyPT,  — Y= —pTC?
(f}f.u}T _ —C_1’}’”C, C = _‘,',FE,_TEI’ CCJT _ 13 Cg — A

Under C, P and CP, Dirac bilinears transform as:

Transformation V_ec:tor Axial vector
'Llf;"}i”w_f w,’}““ 5‘4!
= n(p) VitV —n(p) Wr‘r”’rS‘lf-
C — W H; Wj.’}f”f}ﬁll!

CP —n (p) Uyt —n () Uy S,



Thus both vector and axial vector currents transform the same
way under CP.

Lee and Yang in 1956, suggested that there is no experimental
evidence for parity conservation in weak interaction. They
suggested number of experiments to test the validity of space
reflection invariance in weak decays. One way to test this is to
measure the helicity of outgoing muon in the decay:

T — ut 4,

The helicity of muon comes out to be negative, showing that
parity conservation does not hold in this decay. In the rest frame
of the pion, since ™ comes out with negative helicity, the
neutrino must also come out with negative helicity because of
the spin conservation. Thus confirming the fact that neutrino is
left handed.

T — (=) +



Under charge conjugation,

at S p+5-ﬁ_ M”E:-r?”
Helicity 'H = %T under C and P transforms as

P

HEH, H-—H
Invariance under C gives,
[ (o = T (-5
Experimentally,

FW+_}P.,+(_]L, >> [

p w = (=)



showing that C is also violated in weak interactions. However,
under CP

CcP
rﬂ+—*#+{—lvu — r?‘r——m_(ﬂf’#

which is seen experimentally. Thus, CP conservation holds in

weak interaction.
In the Standard Model, the fermions for each generation in their

left handed chirality state belong to the representation,

(;j) - 9(3,2,1/3)

a.f . (31:_4/3)
d : (3,1,2/3)

(“‘f) . 1(1.2,—-1/2)
e : (1,1,1)



of the electroweak unification group SU¢(3) x SU,(2) x Uy(1).
Hence, the weak interaction Lagrangian for the charged current
iIn the Standard Model is given by,

Lw= 7,!:_;”}’“(1 — ’}”5)'1,.!:’_.; l"ﬂl’;‘_ + h.c.
where 1; Is any of the left-handed doublet (/ is the generation
index). We note that the weak eigenstates d'. s’ and b’ are not

equal to the mass eigenstates d. s and b. They are related to
each other by a unitarity transformation,

d’ d
s’ = V| s (1)

where V is called the CKM matrix.

Vud Vus Vub
V = Vc:d Vc:s Vc:b

Vfd st Vfb



Vb = |Vuple™. Vie = |Vigle 7, a+B+y=m

The Lagrangian transforms as:

Ly = o"(1 =)W + hc
CP

= —n(p)y*(1 = °)i(—n(p))W, + h.c.

We conclude that the weak interaction Lagrangian in the
Standard Model is CP invariant and since CP violation has
been observed in hadronic sector (only in B, B and K decays)
and not in leptonic sector, it is a consequence of mismatch
between weak and mass eigenstates (i.e. the phases in CKM
matrix) and/or the mismatch between CP-eigenstates,

XP2) = —= [|X°) F|X%)]; CP|XP2) == |X22) (2

L,
N



P———

and the mass eigenstates i.e. CP-violation in the mass matrix.
CP-violation due to mass mixing and in the decay amplitude has
been experimentally observed in K° and BY. For Bs decays, the
CP-violation in the mass matrix is not expected in the Standard
Model. In fact time dependent CP-violation asymmetry gives a
clear way to observe direct CP-violation in B and Bs decays.



Conclusion-l

@ No evidence that space-time symmeries are violated by
fundamental laws of nature. Both translational and
rotational symmetries hold in nature.

Translational Symmetry = Energy Momentum Conservation
Rotational Symmetry = Angular Momentum Conservation

@ If we examine light emitted by a distant object billions of
light years away, we find that atoms have been following the
same laws as they are here and now. (Translation
Symmetry)



Conclusion-I|

@ Discrete Symmetries are not universal; both C and P are
violated in the weak interaction but repsected by
electromagnetic and strong interactions. There is no

evidence for violation of time reversal invariance by any of
the fundamental laws of nature.

Basic weak interaction Lagrangian is CP conserving. CP
violation in weak interactions is a consequence of mismatch
between mass eigenstates and CP eigenstates and or
mismatch between weak and mass eigenstates at quark
level. There is no evidence of CP violation in Lepton sector.

CP violation in weak decays is an example where basic
laws are CP invariant but states at quark level violate CP.



Conclusion-lll

@ The fundamental interaction governing the atoms and

molecules is the electromagnetic interaction which does not
violate bilateral symmetry (left-right symmetry). In nature
we find organic molecules in asymmetric form, i.e. left
handed or right handed. This is another example where the
basic laws governing these molecules are bilateric
symmetric but states are not. (Asymmetric intial
conditions?)

Baryon Asymmetry of the Universe: Baryogenesis No
evidence for existence of antibaryons in the universe.

n = ng/n, ~ 3 x 10719 The universe started with a
complete matter antimatter symmetry in big bang picture. In

subsequent evolution of the universe, a net baryon number
was generated. This is possible provided

@ There exists a baryon number violating interaction.



Conclusion-1V

@ There exist C and CP violation to introduce the asymmetry
between particle and antiparticle processes.

© Departure from thermal equilibrium of X-particles which
mediate the baryon number violating interactions.

@ Key question is understanding the nature of discrete
symmetries violation at a fundamental level.



