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Abstract

The geometry of the anti-deSitter spacetime, a space with a negative cos-
mological constant, is examined. The geodesics are shown to be periodic
in time, as they must since the whole spacetime is periodic with respect to
time. The holographic principle is presented and the validity of the entropy
constraint inferred from that principle is checked for our universe and for
a universe filled with radiation. The constraint is found to be fulfilled in
all cases. Finally, an indication is given of how the holographic principle is
realized in the anti-deSitter spacetime.
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1 Introduction

As Einstein realized that his field equations of gravity ruled out a static
universe, his conception of the world forced him to introduce the cosmological
constant. By this trick the static universe was, more or less, a possible
solution to the equations. Soon thereafter, Hubble discovered the redshift
of distant stars and the expanding universe was a fact. Since then Einstein
talked about the cosmological constant as the mistake of his life.

But regardless of what originally made Einstein introduce this constant,
there are good reasons for keeping it in the equations. The most general
versions of the equations contain a cosmological constant, and there are so
far no good physical arguments for excluding it. Recent measurements show
that even though the cosmological constant in the present epoch is extremely
tiny, it is probably not identical to zero but measurably larger [1]. Cosmol-
ogists believe that, during an epoch shortly after big bang, the cosmological
constant was considerable, causing the universe to expand exponentially in
time. This is called the epoch of inflation and fragments of evidence exist for
this period to be a historical fact [2]. New satellites will in a couple of years
permanently confirm or reject this evidence [3].

Even if theory is not able to get rid of the cosmological constant com-
pletely, it seems to be able to restrict the sign of it. Hawking and Page have
shown that a negative cosmological constant results in instabilities which
could hardly be compatible with the present universe [4]. However, the cor-
responding spacetime, the so called anti-deSitter spacetime, has been subject
for deep research during the last years. The physicists have discovered ex-
traordinary properties inherent in the anti-deSitter spacetime, allowing for
an interesting connection between string theory and certain ordinary field
theories [5][6]. Furthermore, the holographic principle (described in section
3) seems to be built in for theories in the anti-deSitter spacetime, which is
generally not the case for other geometries.

This report is an attempt to clarify the basics in the anti-deSitter space-
time and the principle of holography. In section 2 useful metrics are pre-
sented and the geometry of the anti-deSitter cylinder is analyzed. Section 3
discusses the underlying concepts for the holographic principle, and section
4 examines the validity of the holographic entropy bounds in our universe,
in the past and in the future. The dependence of the result with respect
to the matter-radiation composition is also discussed. In section 5 we will
get a glimpse of how the holographic principle is fulfilled in the anti-deSitter
spacetime, considering the entropy of a big black hole. Finally, a summary
with conclusions is found in section 6.
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2 Anti-deSitter Spacetime

With respect to the great interest for the anti-deSitter spacetime at the
moment, it is helpful for every physicist to have an intuition for the corre-
sponding geometry. Formally, the anti-deSitter spacetime is defined as an
empty space solution to the Einstein field equations with a negative cos-
mological constant. The metric for a d-dimensional anti-deSitter spacetime
can be obtained by embedding a (d + 1)-dimensional hyperboloid in a flat
(d+1)-dimensional space with two time-directions. For convenience, only the
3-dimensional case is shown explicitly here (the general metric can be found
in e.g. [5]). The equation for the hyperboloid, defining a 3-dimensional
surface, may be written

−U2 − V 2 +X2 + Y 2 = −b2

where U , V , X and Y are defined throughout the real axis, and b is a real
constant. To arrive at the anti-deSitter metric, this hyperboloid should be
embedded into the metric

ds2 = −dU2 − dV 2 + dX2 + dY 2.

There are several convenient ways of parameterizing the hyperboloid. Here,
two parameterizations will be presented, leading to the global and the Poincaré
coordinates, respectively.

2.1 Global Coordinates

So-called global coordinates are obtained by parameterizing the hyperboloid
in the following way 

U = b coshµ sin t
V = b coshµ cos t
X = b sinhµ cos θ
Y = b sinhµ sin θ

.

Clearly, t and θ are periodic, and we define the range of definition of the
variables to be −π ≤ t ≤ π, 0 ≤ θ ≤ 2π and µ ≥ 0. As these variables are
substituted into the metric, we get

ds2 = b2(− cosh2 µ dt2 + dµ2 + sinh2 µ dθ2).

Usually, one furthermore lets sinhµ = tan ρ, where 0 ≤ ρ ≤ π/2, turning the
metric into the form

ds2 = b2(− sec2 ρ dt2 + sec2 ρ dρ2 + tan2 ρ dθ2).
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In the variables (t, ρ, θ) the anti-deSitter spacetime can be viewed as a cylin-
der, as shown in figure 1. Examples of how geodesic observers and light-rays
behave in this cylinder are given in the last parts of this section.

2.2 Poincaré Coordinates

Another set of coordinates describing the same spacetime is called the Poincaré
coordinates, and is obtained by letting

U = (b2 + x2 + r2 − t2)/2r
V = b t/r
X = (b2 − x2 − r2 + t2)/2r
Y = b x/r

.

Here t and x may be assigned any real value, and r ≥ 0. The metric now
reads

ds2 =
b2

r2
(−dt2 + dr2 + dx2).

How are the Poincaré coordinates related to the global coordinates? By
simply identifying their definitions it is seen that

b sin t sec ρ = (b2 + x2 + r2 − t′2)/2r
tan ρ cos θ = x/r

b tan ρ sin θ = (b2 − x2 − r2 + t′2)/2r
cos t sec ρ = t′/r

,

where t′ denotes the Poincaré time coordinate. By adding the first equation
to the third we get

sin t sec ρ+ tan ρ sin θ =
b

r
.

As far as the the definition ranges for the global coordinates are concerned,
the left hand side ranges throughout the real axis. By symmetry it is then
clear that half of the points (t, ρ, θ) are excluded in this equation, since the
right hand side is always positive. This implies that Poincaré coordinates
only cover one half of the anti-deSitter spacetime. The other half is reached
by letting r ≤ 0. The equations for the boundary surfaces between the
regions where r is positive and negative are obtained by letting r → ∞,
resulting in

sin t+ sin ρ sin θ = 0.

These surfaces are indicated in figure 1. The exact shape of the central
surface which resides in the interval −π/2 ≤ t ≤ π/2 is shown in figure 2.
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Figure 1: In global coordinates t, ρ and θ, the spacetime can be viewed as a cylinder, the
so-called anti-deSitter cylinder. The top and bottom of the cylinder should be identified.
The regions for the different Poincaré parameterizations are also shown.
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π/4

π/2

Figure 2: The central surface in the anti-deSitter cylinder which separates the different
Poincaré parameterizations of the hyperboloid. The surface is obtained by letting r →
±∞. There are similar surfaces in the intervals −π ≤ t ≤ −π/2 and π/2 ≤ t ≤ π, which
are mirror images to the shown surface, mirrored in the planes t = ±π/2.
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2.3 Calculation of the Ricci Tensor

In order to see that these metrics really describe a spacetime with a negative
cosmological constant, the Ricci tensor Rµν will be calculated. The Ricci
tensor is extracted from the Riemann tensor Rρ

µγν by reducing two indices
so that Rµν = Rα

µαν . Einstein’s original field equation for empty space was
Rµν = 0, but equally consistent with the basic argumentation is to write
more generally

Rµν = Λgµν ,

where Λ is a constant, called the cosmological constant. Thus, if the Ricci
tensor is known for empty space, the cosmological constant can be read off.

We choose to work in Poincaré coordinates, xµ = (t, r, x). Then the
Lagrangian L = ẋµẋνgµν is

L =
b2

r2
(−ṫ2 + ṙ2 + ẋ2).

Knowing the Lagrangian L the acceleration Fµ is given, on the one hand, by

2Fµ =
d

ds

(
∂L

∂ẋµ

)
− ∂L

∂xµ
,

on the other hand by
Fµ = ẍµ + Γµαβẋ

αẋβ.

The last expression can be considered as the definition of the Christoffel sym-
bols Γµαβ, the components of which can now be determined by identification.
We get

Γttr = Γtrt = Γxxr = Γxrx = − 1

2r

Γrrr = Γrxx = −Γrtt =
1

r

For convenience in the calculations we collect these elements into matrices
Γβ = Γµαβ, considering µ as row index and α as column index.

Γt =

 0 −1/2r 0
−1/r 0 0

0 0 0

 , Γr =

 −1/2r 0 0
0 1/r 0
0 0 −1/2r



and Γx =

 0 0 0
0 0 1/r
0 1/2r 0


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Perform the same collection of elements for the Riemann tensor by letting
Bρσ = Rµ

νρσ, where again µ is the row index and ν is the column index. The
definition of the Riemann tensor,

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµραΓασν − ΓµσαΓαρν

can now be written, using matrix multiplication, as

Bρσ = ∂ρΓσ − ∂σΓρ + ΓρΓσ − ΓσΓρ.

Clearly, Bρσ is anti-symmetric with respect to ρ and σ. The only surviving
matrices are

Brt = −Btr =

 0 1/4r2 0
1/2r2 0 0

0 0 0

 ,

Brx = −Bxr =

 0 0 0
0 0 −1/2r2

0 1/4r2 0

 .
The non-zero components of the Riemann tensor can now be read off,

Rt
rrt = −Rt

rtr = Rx
rrx = −Rx

rxr =
1

4r2
,

Rr
trt = −Rr

ttr = Rr
xxr = −Rr

xrx =
1

2r2
.

and the Ricci tensor eventually turns out to be

Rµν =

 1/2r2 0 0
0 −1/2r2 0
0 0 −1/2r2

 = − 1

2b2
gµν .

Hence, the metric expresses an empty space solution with a negative cosmo-
logical constant Λ given by

Λ = − 1

2b2
.

2.4 Geodesic observers in Anti-deSitter Spacetime

We will investigate the structure of the anti-deSitter spacetime using the
global coordinates. We note that the metric does not contain the time vari-
able t explicitly, so there is no particular start or end point in time. Moreover,
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as will be shown below, the proper time difference between t = −π and t = π
is finite. We also know that the boundaries at t = −π and t = π are to be
identified.

Now the intuition tells us that we are in trouble. Inevitably, we get
time loops, with all the related problems. For time loops to work we need
periodicity in everything happening in the cylinder. But so far no interactions
have been introduced, and the space is empty, so the only thing which is
allowed is a geodesic observer with negligible mass and no internal structure.
(This of course prevents the observer from being able to observe anything,
but that does not matter here.) Consequently, it is enough to investigate the
possible periodicity in the geodesics.

Consider an observer fixed at the center of the cylinder, i.e. ρ = 0. It
is easy to check that this observer moves along a geodesic. The Lagrangian,
using the proper time τ as affine parameter, states that

−1 = L = −b2 ṫ 2,

since ρ̇ = 0. The proper time is obtained directly, τ = b2t, and obviously
there is a finite proper time difference between the end points of t according
to this observer.

To investigate the periodicity, we derive the equation of motion for a
geodesic observer moving radially in the cylinder. Since θ̇ = 0, we have

−1 = L = b2

(
− ṫ2

cos2 ρ
+

ρ̇2

cos2 ρ

)
(1)

For geodesics Fµ = 0, so the t-component states

0 =
d

ds

(
2b2ṫ

cos2 ρ

)
.

Integrating this and isolating the time variable yields

ṫ =
k cos2 ρ

b
,

where k is a constant. Substituting this relation into equation (1), we get

b2ρ̇2

cos2 ρ
= 1− k2 cos2 ρ.

In this equation the derivatives are with respect to the proper time τ , but
what is interesting here is how ρ changes with respect to the time coordinate
t. We have

ρ̇ =
dρ

dt
ṫ =

dρ

dt

k cos2 ρ

b
.
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The final equation of motion expressed in derivatives with respect to the time
coordinate t is now

dρ

dt
= ±

√
1− 1

k2 cos2 ρ
. (2)

This equation may be solved by making the substitution

x =
sin ρ√

1− 1/k2
,

which turns equation (2) into the form

1√
1− x2

dx

dt
= ±1

The left hand side is recognized as the derivative of arcsinx(t). Hence,

sin ρ =
√

1− 1/k2 sin(t+ t0),

where t0 is a constant of integration. Clearly, the geodesics have the desired
periodicity. Figure 3 shows a cross-sectioned anti-deSitter cylinder in which
are plotted four geodesics with different initial conditions. As k grows the
geodesics look more zigzag, get straighter line segments with unitary slope.

2.5 Light-rays in Anti-deSitter Spacetime

An interesting feature of the anti-deSitter spacetime materializes when exam-
ining the behavior of light-rays. Here, radially outgoing rays from the middle
of the cylinder are studied. Light-rays always move along null-geodesics, i.e.
the Lagrangian vanish. In global coordinates we can thus write

0 = b2

(
− ṫ2

cos2 ρ
+

ρ̇2

cos2 ρ

)
,

where the dot denotes derivative with respect to a suitable parameter. This
yields the fairly simple differential equation ṫ = ±ρ̇, which integrates to

t+ t0 = ±ρ.

We see that a light-ray can travel from the center out to infinity (at ρ = π/2),
and back again if it is reflected somewhere arbitrarily far away, in finite proper
time of an observer in the center.
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t = − π

t = π

ρ = π/2 ρ = π/2

θ = π θ = 0

Figure 3: Cross-section of the anti-deSitter cylinder in which four geodesics are shown.
They are all periodic, which is necessary as the bottom and the top of the cylinder are to
be identified. As k grows the geodesic look more zigzag, get straighter line segments with
unitary slope.
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3 The Holographic Principle

It is always a very fruitful situation when a discovery is made that put dif-
ferent parts of the physics in contradiction to each other. Many of the great
steps forward being taken in the history of science are indeed forced by such
a situation. The prize people have to pay is that a completely new way of
looking at the world may be inevitable. A way that means abandoning ideas
which were previously considered extremely natural.

As a truly surprising example of this, the development of the holographic
principle is the outcome of a collision between ordinary statistical mechanics
and black hole thermodynamics. The argumentation in this section will try
to justify the holographic principle, without going into the very deep details.
For a fuller treatment, see e.g. [7].

3.1 Violation of the Second Law

Consider a region of volume V containing N noninteracting bosons. Using
Bolzmann’s definition, the entropy S of this system is given by

S = ln Ω,

where Ω is the statistical weight, i.e. the number of possible different micro-
scopic quantum states contributing to the same thermodynamic state. It is
an obvious consequence of quantum mechanics that, if we add to the system
another region with the same properties, the total number of quantum states
in the new system is

Ωtot = Ω2,

since to each possible state for the particles in the first region there are Ω
possible states for the ones in the second region. Thus, the total entropy is

Stot = 2S.

Adding more regions the entropy evidently scale like

S = αV,

where α is a suitable constant.
Letting the volume V of this region vary while keeping the density δ

constant, there is a certain critical radius R for which, by enlarging the
region even more, a black hole is formed. This critical radius is calculated
straightforwardly from the Schwarzschild radius, and is given by

R2 =
3

8π

c2

δG
,
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where c is the speed of light and G is Newton’s constant. Thus, regardless
of the density, it is possible to form a black hole by making the radius of the
region sufficiently large.

Now, according to reliable calculations by Hawking and Bekenstein, it
is possible to assign an entropy Sb to a (non-rotating and uncharged) black
hole by the formula

Sb =
πc3

h̄G
R2 (3)

A recipe for deriving this equation is given in section 5. We see that the
entropy S of the region grows faster, as R increases, than the entropy Sb of
a black hole of the same size. For radii satisfying

R > R0 =
3

4

c3

h̄αG
,

the entropy of the region exceeds the one of the equally sized black hole. If,
in addition, the density is restricted to δ < h̄2G/3π, a black hole will form at
some radius R > R0. But this process require a decreasing entropy, violating
the second law of thermodynamics.

3.2 The Bekenstein and ’t Hooft Propositions

It is of course unacceptable to have a theory in which violation of the second
law is allowed. The immediate conclusion is that the maximum entropy of a
region is always given by the black hole entropy formula (3). This was the
original statement of Bekenstein. An attempt to extract the the underlying
physics has been put forward by ’t Hooft. He proposed a principle saying
that everything inside a region of space can be describable by a theory, whose
degrees of freedom grows proportionally to the area of the region boundary.

This is clearly in contradiction to our basic intuition. Suppose for instance
that each particle possesses an n-fold degree of freedom independently of the
other particles. Having N particles the total number of degrees of freedom
is f = Nn. If we assume the density to be constant, N is proportional to
the volume, and we would naively conclude that f is also proportional to the
volume. The number of possible states is nN , and the maximum entropy is

S = N lnn = f
lnn

n
.

However, if we follow ’t Hooft and assume that the theory put an upper
bound on the degrees of freedom f according to

degrees of freedom

boundary area
=

f

4πR2
<

n

4 lnn

c

h̄G
,
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then the black hole entropy formula (3) is automatically fulfilled. This means
that the theory which is to describe the physics in the region, this theory
possesses of the order one degree of freedom per Planck area. If this is true,
we may think of the three-dimensional spatial world as being effectively two-
dimensional, in a way like a holographic picture. Accordingly, this principle
have been called the holographic principle.

4 Holography in Our Universe

A natural question to ask is whether the holographic principle could be ful-
filled in the universe today. In cosmology there is a largest region playing
any physical role, namely the region inside the particle horizon. This is the
region in which the particles have had time to interact. If the entropy con-
straint inferred from the holographic principle holds true for this region, it
holds true for any region inside it as well.

Let RH = RH(t) be the coordinate at the particle horizon. The entropy
SH inside RH must, according to the holographic principle, obey

SH < Sb =
πc3

h̄G
(aRH)2. (4)

where a is the scale factor found in the metric below, so that aRH is the
actual radius of the region. To check the requirement in (4) the present
particle horizon has to be calculated. We assume the universe to be flat, as
this seems to be a good approximation for our universe. The metric is then
given by

ds2 = dt2 − a(t)
(
dr2 + r2dΩ2

)
.

The assumption of a flat universe at all times of course excludes the possibility
of an inflationary epoch. This lack of generality might strike back on us in
the end, but unfortunately an inclusion of inflation physics is beyond the
scope of this text.

4.1 Calculation of the Present Particle Horizon

The particle horizon is obtained from the metric by integrating the radial
coordinate along a null-geodesic starting at the big bang, up to the time t.
In other words

RH(t) =
∫
dr =

∫ t

0

dt′

a(t′)
. (5)
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The evolution of a with respect to time is obtained from the Friedmann
equations, which for flat space can be written

ä

a
= −4π

3
(ρ+ 3p) (6)(

ȧ

a

)2

=
8π

3
ρ (7)

Assuming a linear relation between the density and the pressure, p = γρ, we
can readily solve for a(t) and get

a

ac

=
(
t

tc

)q
,

where ac and tc are constants of integration, and q = 2/3(1+γ). The standard
model of the universe now assumes that the evolution, at first, was governed
by the radiation density while the matter density was negligible. However,
after a certain moment in time, matter has dominated the universe dynamics.
This moment is called the matter-radiation equality and is denoted by teq.

In the radiation dominated era we know that ρ = p/3 (giving q = 1/2),
and for the matter domination the pressure is negligible and we let p = 0
(giving q = 2/3). Now the integral in (5) is rewritten as

RH(t) =
t1/2eq

aeq

∫ teq

0

dt′

t′1/2
+

t2/3eq

aeq

∫ t

teq

dt′

t′2/3
.

where we have let ac = aeq and tc = teq. Working out the integrals, we see
that

aRH = 3t− t2/3t1/3eq

The present age of the universe is t0 = 15 ·109 years and the radiation-matter
equality occurred at teq = 1500 years. Since teq/t0 is small, we may neglect
the contribution from the last term on the right hand side, and the horizon
at t = t0 is

aRH = 45 · 109 ly

Using this value in equation (4), the present upper bound on the entropy
turns out to be

Sb = 2 · 10123.

4.2 The Entropy at the Present

How large is the entropy of the universe at the present epoch? Since the vast
majority of the particles in the universe are photons (there are 108 times more
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photons than baryons), we can estimate the entropy by just looking at the
photons. Strictly speaking, the neutrinos give a contribution of almost the
same order, but for this estimate it is sufficient to only consider the photons.

Consider the universe as a cavity containing black body radiation of the
temperature T . The entropy is

SH =
16π3

135

k3

h̄3c3
(aRH)3T 3. (8)

Putting in the present values T (t0) = 2.7 K and a0RH(t0) = 45 · 109 ly, we
get the entropy

SH = 5 · 1089,

which is well below the limit.

4.3 Future Aspects

From (4) and (8) we get the following inequality which has to be true at all
times,

σRH < a2,

where σ is a constant and given by

σ =
16π2

135

k3T 3
0 a

3
0G

h̄2c6

We know that the inequality holds true at the present epoch t0, but will this
continue to be the case in the future? Let us for the moment assume that
the inequality is saturated at t0,

σRH(t0) = a2
0.

We rewrite this in order to see what is needed for σRH < a as time goes on.

σRH = σ(RH −RH(t0)) + a2
0

= σc
∫ t

t0

dt′

a
+ a2

0

=
σctq0

a0(1− q)
(
t1−q − t1−q0

)
+ a2

0 − a2 + a2

=
σct0

a0(1− q)

((
t

t0

)1−q
− 1

)
− a2

0

((
t

t0

)2q

− 1

)
+ a2

= g(t) + a(t)2,
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where

g(t) =
σct0

a0(1− q)

((
t

t0

)1−q
− 1

)
− a2

0

((
t

t0

)2q

− 1

)
Thus, for σRH < a2 to be fulfilled at all times t > t0, we need to have g(t) ≤ 0
for t ≥ 0 and specially g′(t0) ≤ 0 since we know that g(t0) = 0. Obviously,
this implies that

q ≥ 1

3
, and

σct0
2a3

0q
≤ 1.

In fact, the second constraint guarantees that g(t) ≤ 0 for all t ≥ t0, so these
constraints are sufficient. Of course, if the inequality σRH(t0) < a2

0 is not
saturated, which is certainly not the case, we can allow for a larger value of
the constant σct0/2a

3
0q, but we will see that this is not needed.

That the first constraint is fulfilled follows from special relativity since
q = 2/3(1 − γ) and |γ| must not exceed unity for the speed of sound to
be smaller the speed of light. Checking the second constraint with present
values, we get

σct0
2a3

0b
≤ 1.0 · 10−34.

Clearly, our universe will continue to obey the holographic principle for all
times in the future.

4.4 A Universe Filled with Radiation

In this context it is interesting to study a flat universe consisting exclusively of
photons, since there are no free parameters involved. The result has then the
potential to detect fundamental inconsistencies in the theory. Here, γ = 1/3
and the scale factor is

a(t) = a0

(
t

t0

)1/2

.

The radius of the particle horizon is now

aRH = ac
∫ t

0

dt′

a(t′)
= 2ct.

As before we want to study the relationship between SH and Sb. It is conve-
nient to introduce the ratio

δ =
SH

Sb

.

According to the holographic principle, δ < 1 at every time. For black body
radiation in the volume V and with the temperature T we have, as stated
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earlier,

S =
4π2

45

k3

h̄3c3
V T 3. (9)

In this context, V is the volume of the particle horizon, a sphere with the
radius aRH. We have

V =
4π

3
(aRH)3 =

32π

3
(ct)3.

We also know, concerning the mass density of blackbody radiation, that

ρc2 =
π2

15

k4

h̄3c3
T 4. (10)

We can obtain another relation for the mass density from the second Fried-
mann equation (7). For a flat universe we get

ρc2 =
3

8π

c2

G

(
ȧ

a

)2

=
3

8π

c2

G

1

t2

From these two relations we can extract the time dependence of the temper-
ature, which turn out to be

T 4 =
45h̄3c5

8π3k4G

1

t2

We can now express the entropy of the region inside the horizon as a function
of time,

SH =
4π2

45

k3

h̄3c3

32π

3
(ct)3

(
45h̄3c5

8π3k4G

)3/4
1

t3/2
.

The corresponding entropy for a black hole of the same size as the horizon,
is given by

Sb = π (2ct)2 c3

h̄G
.

As we expect, the black hole entropy Sb grows faster than the entropy of the
radiation SH. Dividing SH with Sb we get the time dependence of δ

δ =
SH

Sb

=
4

3

(
8

45π

)1/4
(
h̄G

c5

)1/4
1√
t

where we recognize the Planck time tP =
√
h̄G/c5. After rewriting this

equation slightly,

δ =
4

3

(
8

45π

)1/4
√
tP
t

= 0.65

√
tP
t
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we arrive at the conclusion that the holographic entropy bound is fulfilled at
every relevant time, i.e. at times larger than the Planck time tP. There are
no adjustable parameters here, and there is no way of changing this result,
ending in another conclusion. Thus we should not be surprised by finding
that the entropy bound is fulfilled in a universe consisting of a mixture of
radiation and matter, like the standard model of our universe, where the
initial stages are dominated by radiation. Still, Fischler and Susskind find
this remarkable [8].

4.5 Black Hole Formation

Let us look more closely at the just described universe, the one filled with
photons. We are going to calculate the entropy of this universe just before
a black hole is formed. The entropy S in terms of the density ρ is obtained
from equations (9) and (10) and reads

S =
4

3

(
π2c3

15h̄3

)1/4
4π

3
(aRH)3 ρ3/4 (11)

At the moment just before the black hole is formed the radius aRH is given
by the Schwarzschild radius

aRH =
2MG

c2
=

8π(aRH)3ρG

3c2
,

from where we get

aRH =

√
3c2

8πρG
. (12)

Substituting this radius in the equation for the entropy of the radiation (11)
yields

S =
1

3

(
3

20

)1/4
(
c5

h̄G2

)3/4
1

ρ

3/4

.

After the black hole is formed, the entropy is given by the black hole entropy
formula

SB =
πc3

h̄G
(aRH)2 =

3

8

c5

h̄G2

1

ρ

where equation (12) was used to eliminate aRH. We can now write

S =
4

3

(
1

90

)1/4

S
3/4
B .
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Clearly, just before the black hole is being formed the actual entropy of the
region is far below the entropy of the black hole just after it has been created.
It might be the case that the Bekenstein limit Sb is never saturated in reality,
and that ’t Hooft actually over-counts the degrees of freedom [9].

5 Black Hole Entropy in Anti-deSitter

In the preceding sections we have seen problems arising when the entropy of
a black hole is considered. The formula used for the black hole entropy, the
Bekenstein Hawking formula, is valid in a Minkowski background, and thus
applicable to our universe.

In this section, the black hole entropy is derived assuming an anti-deSitter
background. If the size of the black hole is small compared to the length scale
at which the curvature is important, then nothing will change. The space is
then more or less minkowskian around the black hole. However, if the black
hole is big or the cosmological constant is large, things will turn out to be
quite different. This domain will be explored in the following.

5.1 Extending Schwarzschild to Higher Dimensions

A black hole in Minkowski background is described by the famous Schwarz-
schild metric,

ds2 = c2(1− a/r)dt2 − 1

1− a/r
dr2 − r2dθ2 + sin2 θ dφ2,

where a is the radial coordinate at the event horizon, called the Schwarzschild
radius. Let us here briefly review the procedure for relating this radius to
the familiar quantities M , G and c. Consider a radial non-null geodesic, for
which the Lagrangian L is

c2 = L = c2(1− a/r)ṫ2 − 1

1− a/r
ṙ2 (13)

where we have used the proper time τ as parameter. Since the time coordi-
nate t is integrable, we have

(1− a/r)ṫ = γ,

where γ is a constant of integration. Substituting this back in the Lagrangian
(13) yields

c2(1− a/r) = c2γ2 − ṙ2.
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By differentiating this we get

r̈ = −c
2a

2r2
.

Now recall Newton’s law of gravity, which for radial motion states

r′′ = −GM
r2

,

where the derivative is with respect to Newton’s universal time. If we identify
Newton’s time with the time coordinate t, then G will not be a constant.
Instead, we are lead to define G from the formula

r̈ = −GM
r2

,

so that the Schwarzschild radius can be written a = 2GM/c2.
Let us stick to Newton’s classical formulation for a moment. How is the

law of gravity modified when changing the number of dimensions? Crucial
for Newton’s law as expressing a source field is Gauß’ law,∫

S
r′′ · dS = −4πGM

where S is a closed surface around the object and r = rr̂. The equation simply
say that the GM is the source to the field r′′. Moving up to four dimensions,
the closed surface around the source is a three-dimensional surface (in four
dimensions an object cannot be enclosed by a two-dimensional surface). In
the general case with d dimensions we want to have∫

S
r′′d · dSd = −AdGM

where rd = rr̂d and dSi are d-dimensional vectors, and Ad is a constant
related to the number of dimensions. The surface is now d − 1 dimensional
and scale like rd−1, so we need

r′′d = −GM r̂d
rd−1

,

for Gauß’ law to be fulfilled. Note that the unit of G depend on the number
of dimensions.

Moving back to general relativity, a reasonable extension of the Schwarz-
schild metric to a (d+1)-dimensional spacetime (d space dimensions and one
time dimension) seems to be

ds2 = c2(1− (a/r)d−2)dt2 − 1

1− (a/r)d−2
dr2 − r2dΩ2,
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where again a is the radius of the black hole and dΩ2 denotes the angular
part of the metric. Following the method used for the three-dimensional case
we now have

r̈ = −(d− 2)
c2ad−2

2rd−1
,

showing that the Schwarzschild radius is given by

a =

(
2GM

(d− 2)c2

)1/(d−2)

. (14)

5.2 Including the Cosmological Constant

Naturally, the most immediate way to get the Schwarzschild metric in d
dimensions would be to extend Einstein’s equations to arbitrary dimension
and then solve them for an empty space assuming spherical symmetry. Not
surprisingly, we would arrive in the same metric if the cosmological constant
is set to zero. However, if the cosmological constant is kept, the metric is
slightly modified

ds2 = c2(1− (a/r)d−2 + Λr2)dt2 − 1

1− (a/r)d−2 + Λr2
dr2 − r2dΩ2.

There is a horizon at rh, where rh is the real solution to the equation

Λrd + rd−2 − ad−2 = 0.

If the black hole is big or the curvature is substantial, i.e. r2
hΛ� 1, then the

rd−2 term may be neglected, and we can approximate the horizon size

rh ≈
a

(a2Λ)1/d
.

5.3 Changing to Euclidean Metric

To obtain the entropy of the black hole the method of analytic continuation
will be used, where the corresponding Euclidean metric is examined, ex-
panded at the horizon. This is done by making the substitution t→ τ = it,
where τ is real. The metric now reads

ds2 = −c2(1− (a/r)d−2 + Λr2)dτ 2 − 1

1− (a/r)d−2 + Λr2
dr2 − r2dΩ2.
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Introduce a the new coordinates R and α, defined as

R =
2a

d(Λa2)1−1/d

(
1−

(
a

r

)d−2

+ Λr2

)1/2

α =
d(Λa2)1−1/d

2a
cτ.

While the differential of α is trivial, we need to work a little for the differential
of R, which becomes

dR =
1

d(Λa2)1−1/d

(a/r)d−1 + 2Λra

(1− (a/r)d−2 + Λr2)1/2
dr.

Substituting these variables in the metric, and expanding around the point
r = rh, we get to the first order in R,

ds2 = −R2dα2 − dR2 − r2
hdΩ2.

As far as the coordinates R and α are concerned, this is a Euclidean metric
where α plays the role of an angle, for which reason it must be periodic.
Assuming a non-conical metric α has a period of 2π. Consequently, τ is
periodic, having a period given by

Period(τ) =
4πa

cd(Λa2)1−1/d

Within the framework of quantum field theory it is possible, but beyond
the scope of this text, to show that this period can be connected to a tem-
perature in the following way

Period(τ) =
h̄

kT
.

The temperature at the horizon of a big black hole in an anti-deSitter space-
time is thus given by

T =
h̄cd(Λa2)1−1/d

4πak
.

Knowing the temperature as a function of the size of the black hole, i.e. as
a function of the mass, the entropy is obtained by using the thermodynamic
relation

dE = kTdS.
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where E is the energy. Hence,

1

c2

dS

dM
=

1

kT
=

4πa

h̄cd(Λa2)1−1/d

Using equation (14) to get the mass dependence of a, we can write

dS

dM
=

4πc

h̄dΛ

(
(d− 2)c2Λ

2G

)1/d
1

M1/d
.

After a trivial integration we get

S =
4π(d− 1)c

h̄d2Λ

(
(d− 2)c2Λ

2G

)1/d

M1−1/d.

We observe that the mass dependence of the entropy is quite different from
the minkowskian case. A similar treatment of a black hole in a minkowskian
background shows that

Sminkowski =
4πc

h̄(d− 1)

(
2G

(d− 2)c2

)1/(d−2)

M1+1/(d−2).

Now consider a volume in d−1 dimensions containing radiation. In three
dimensions we have the familiar equations (9) and (10) describing the entropy
and energy density as a function of the temperature. Apart from the factor
in front these can be extended to arbitrary dimension by unit analysis, from
which we get

Srad = fd

(
1

h̄c

)d−1

V (kT )d−1

ρc2 =
(d− 1)fd

d

(
1

h̄c

)d−1

(kT )d

where fd is a dimensionless factor depending on d, and V is the volume of
the (d− 1)-dimensional region. The mass in the region is M = ρV , hence

Srad = (fdV )1/d

(
dc

(d− 1)h̄

)1−1/d

M1−1/d.

Obviously, the mass dependence of the entropy obtained here is the same as
for the large black hole in anti-deSitter spacetime. Note that the volume V
is (d− 1)-dimensional and the anti-deSitter space is d-dimensional.
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5.4 Indication of Holography

As we have seen in section 2, in anti-deSitter spacetime there is a very special
boundary at ρ = π/2. It can never be reached by a geodesic observer, but a
light beam can travel forth and back in finite time. In section 2 we considered
the two-dimensional case, but the metrics can easily be extended to higher
dimensions by introducing more angular variables. Suppose the anti-deSitter
spacetime has four space-like dimensions (d = 4) and one time direction, then
the boundary at ρ = π/2 has three space-like dimensions (d − 1 = 3), like
our world. It is possible, at least formally, to think of a world being confined
to the boundary, and we may as well think of theories which only reside in
the boundary, and other theories formulated in the whole spacetime.

The calculation performed above shows striking similarities in the mass
dependence of the entropy, on the one hand for radiation in the boundary,
on the other hand for a large black hole in the interior. This indicate that
there might be a connection between field theories in the boundary, which
describe radiation, and general relativity in the interior, which describes the
black hole. This supposition has been confirmed in a variety of ways during
the last years (e.g. [5]) and a lot of research is going on at the moment.

This connection of the theories in the boundary and in the interior is in
fact an example of holography. The holographic principle states that the our
world is effectively two-dimensional, and in a world of arbitrary dimension
it proclaims that one of the dimensions is not used in reality. This means
that it should be possible to formulate the theories describing the world in
one dimension short, i.e. to formulate them in the boundary. In anti-deSitter
spacetime this seems to work.

6 Summary

We have acquainted ourselves with the geometry in the anti-deSitter space-
time and seen that geodesics are periodic in time, which is also the case for
the whole spacetime. The periodicity causes time loops, and this certainly
generates problems if there exist processes which are independent of the space
time. But since no interaction have been introduced, we do not have such
processes. We can only consider geodesics. The anti-deSitter spacetime is
thus self-consistent.

The motivation for proposing the holographic principle have been pre-
sented, being a result of black hole thermodynamics. The constraint on the
entropy inferred from the principle was checked for our universe, and was
found fulfilled. It should be noted, however, that inflation was not included
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in the calculations, and it is immediately realized that inflation may destroy
the calculations completely. Inflation makes the particle horizon grow expo-
nentially in time, and the particle horizon used here is then several tens of
orders of magnitude too small.

Although it has been made clear in section 4 that the holographic prin-
ciple is not ruled out in the standard model of the universe, our calculations
can, of course, not tell whether the holographic principle is a fundamental
property of the world. For checking this, we need to reformulate the theories,
allowing for just two spacelike degrees of freedom. The theorists have not
yet succeeded in finding such a theory for the present spacetime. However,
as we have seen examples of in the previous section, it is possible to realize
the holographic principle in the anti-deSitter spacetime. There, the theory
of gravity (or more precisely string theory) inside the spacetime is equivalent
to a field theory in the boundary. These results may be useful since the
boundary in an anti-deSitter space is similar to the spacetime of our world,
allowing us to make conclusions about our field theories by examining gravity
inside an anti-deSitter spacetime. But concerning the present spacetime, the
mystery of holography remains.

There are still things to be done.
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