Catalytic Wet Oxidation (CWO) in Waste Water Treatment (Introduction of a new Technology). S. Tajammul Hussain **National Centre for Physics /Chemistry Department Quaid-i-Azam University** Islamabad, Pakistan

CONTEXT OF CWO IN WASTE WATER TREATMENT

Problem: Treatment of waste water streams containing toxic & non-biodegradable organics at dilute concentrations. Chlorophenols — pulp & paper industry (Cl bleach). **Proposed treatment method:** Heterogeneous Catalytic Wet Oxidation (CWO) conducted at low severity (T, P) Catalyst (solid) recoverable & reusable. Catalyst deactivation due to heavy polymeric deposits. Low selectivity towards CO₂.

GENERAL OBJECTIVES

Development of:

Selective & cokeless industrial catalysts;

Trustful CWO kinetics accounting for deactivation.

Economically and process wise acceptable to industries.

SPECIFIC OBJEVTIVES

CWO of model phenol solution over MnO₂/CeO₂
Pollutant and TOC removal,
Catalyst characterization,
Kinetic modeling,
Fate of removed C & catalyst selectivity,
MnO₂/CeO₂ noble metal promotion.

CWO of a model Chloroguaiacol solution
TOC & pollutant removal
Effect of catalysts (noble metal; oxides),
Effect of temperature,
Intermediates identification.

EXPERIMENTAL

1- Oxygen cylinder 2- Pressure regulator **3- Liquid sampling** 4- Magnet drive **5- Pressure gauge** 6- Relief valve 7- Temperature controller 8- Slurry reactor 9- Heating jacket **10- Reagent injection** device

Range of operating conditions: Initial pollutant concentration 1-10 g/L **Catalyst loading** 1-5 g/L **BET surface area** Mn/Ce $107 \text{ m}^2/\text{g}$ Pt-Mn/Ce 102 # Pt/Al₂O₃ 190 # Co/Bi **64** # CuO.ZnO/Al₂O₃ 10 # **Particle diameter Oxygen partial pressure** 0.5-1.5 MPa **Temperature Stirrer speed** 750 rpm

Analytical techniques: Liquid phase: GC-MSD, HPLC, TOC. Catalyst: BET, CHN, XPS, TPO-MS, TPR, SEM.

<0.147 mm

80-200 °C

RESULTS Effect of temperature on phenol CWO over MnO₂/CeO₂

 $[Phenol]_0 = 1g/L$ (TOC)_0 = 766 ppm PO_2 = 0.5 MPa [Cat] = 5 g/L

Effect of temperature on TOC reduction during CWO of phenol over MnO₂/CeO₂

 $[Phenol]_0 = 1g/L$ $(TOC)_0 = 766 ppm$ $PO_2 = 0.5 MPa$ [Cat] = 5 g/L Effect of phenol initial concentration and catalyst loading on TOC removal in the presence of MnO₂/CeO₂

XP C1s peak spectra of catalyst samples withdrawn @ # CWO reaction times

[Phenol]₀ = 1g/L; (TOC)₀ = 766 ppm; PO₂ = 0.5 MPa;T = 80 °C; Mn/Ce

CO₂ production during TPO of catalyst samples withdrawn @ # CWO reaction times

[Phenol]₀ = 1g/L; (TOC)₀ = 766 ppm; PO₂ = 0.5 MPa;T = 80 °C; Mn/Ce

Proposed reaction scheme for phenol CWO with formation of carbonaceous deposits

Measured and predicted time profiles for phenol CWO (90 °C, 0.5 M Pa PO₂)

Arrhenius and Van't Hoff plots for rate & equilibrium constants

TOC, solid carbon, gaseous carbon (CO₂) time profiles, and CO₂ yield versus TOC conversion

[Phenol]₀ = 1g/L (TOC)₀ = 766 ppm PO₂ = 0.5 MPa T = 130 °C

Effect of Pt-loading & loading method on TOC and phenol conversions

t = 60 min

TOC conversion and CO₂ yield versus Pt-loading on Mn/Ce

TOC conversion and CO₂ yield versus Ag-loading on Pt (1 wt %)-Mn/Ce

Screening tests: TOC removal vs. # solid catalysts (CWO of chloroguaiacol)

[CG]₀ = 1g/L; (TOC)₀ = 529 ppm; PO₂ = 0.5 MPa; T = 130 °C; t =1hr

Effect of catalyst on TOC & chlorogaïacol degradation rate

Effect of CWO temperature on TOC & chlorogaïacol degradation rate over Pt/Al₂O₃

Catalyst Stability Increase. K doping and Zeolite support

Effect of Zeolite addition on CWO reaction (catalyst Stability)

CO₂ yield (%) on Zeolite supported and unsupported CWO catalysts

TPO Study of CWO catalyst

XPS analysis of CWO Catalysts

CONCLUDING REMARKS

*Phenol & TOC removal is fast during CWO @ mild T & P over Mn/Ce **Deactivating carbonaceous deposits on catalyst surface.** << K >> addition drastically reduces the carbonaceous deposits. * Zeolite supportes CWO catalyst increases the catalyst life. * Phenol CWO kinetics treated using the LHHW approach for deactivating systems. *Successful description by LHHW approach of the 4 lumped species (CD;TIC; TOC; Solid C). *Enhanced selectivity to CO₂ with M/zeolite-promoted Mn/Ce; *CWO effective removal Cl-guaiacol (Mn/Ce > Pt/Al₂O₃ > Co/Bi); *Fast destruction Cl-guaiacol & formation of recalcitrant interm. which can be used as polymers.

