LHC Detectors and their Physics Potential

Nick Ellis

PH Department, CERN, Geneva
Part 1
Introduction to the LHC
Detector Requirements & Design Concepts
What is the Large Hadron Collider?

- Circular proton-proton collider under construction at CERN
 - Collide counter-rotating beams of protons head-on
 - Centre-of-mass energy
 \[\sqrt{s} = 2\times E_{\text{beam}} \approx 2\times p_{\text{beam}} \]
 - Compare to fixed-target
 \[\sqrt{s} \approx \sqrt{(2\times m\times E_{\text{beam}})} \]
 \[m \approx 1 \text{ GeV for proton target} \]
- Will also operate some of the time with heavy-ion beams
 - e.g. Pb-Pb collisions
- First proton-proton collisions expected in Summer 2007
Energy and intensity

- Want very high **energy** and very high **intensity** to maximize the sensitivity to new physics
 - Energy needed to produce new massive particles such as the Higgs boson
 - Intensity needed because some of the processes that one would like to study are very rare (e.g. small $\sigma.B$ for decay modes visible above background)
LHC uses existing CERN complex

- LHC is being built in the existing tunnel previously used for LEP
 - Circumference = 27 km
 - Radius = 4.3 km
- Use existing accelerators as injection system
- Four major “experiments”
 - ATLAS and CMS are “general-purpose” detectors optimised for exploring new physics in pp collisions
 - LHCb is a specialized detector optimised for B-physics studies
 - ALICE is a specialized detector optimised for heavy-ion physics
Path of the CERN LEP/LHC tunnel

Circumference of ring ~ 27 km
Illustration with ATLAS detector
Beam Energy

- Energy of protons is limited by the magnets that guide the beams on circular path
 - Beam energy \(\equiv \) momentum:
 \[
 p = 0.3 \times B \times r
 \]
 \(p \) = momentum [GeV],
 \(B \) = magnetic field [Tesla],
 \(r \) = radius [metres]

- Since the radius of the ring is fixed, one has to use very high-field magnets to reach high energy...
 - and fill as large a fraction as possible of the circumference with magnets
 - Achieve \(\sim 2/3 \) of ring with dipole magnets
 - Need other magnets for focusing, etc
 - Need straight sections for acceleration, detectors
 - Also require space for beam injection and ejection systems
Need very high-field “two-in-one” magnets

- Use 15-meter long superconducting magnet coils cooled to 1.9 K with super-fluid Helium
 - Field > 8 Tesla
 - Compared to 4–5 Tesla at Tevatron and HERA
- Since LHC collides beams of protons (not proton-antiproton as at Tevatron), one needs double magnets
 - Note: Use two proton beams because antiprotons cannot be produced, accumulated and cooled in sufficient numbers to reach desired beam intensity
Luminosity

- Want highest *luminosity* possible: *Rate* ≡ \(\sigma \times L \)
 - Access to rare (i.e. low cross-section) processes

\[
\mathcal{L} = \frac{N_{b1} N_{b2} f_{\text{rev}} k_b}{2\pi \sqrt{(\sigma_{x1}^2 + \sigma_{x2}^2)(\sigma_{y1}^2 + \sigma_{y2}^2)}} \cdot \exp \left\{ -\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x1}^2 + \sigma_{x2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y1}^2 + \sigma_{y2}^2)} \right\}
\]

- Beam parameters at LHC
 - \(N \approx 10^{11} \); \(\sigma \approx 15 \text{ \(\mu \)m} \) in ATLAS and CMS; \(f = 11 \text{ kHz} \); \(k = 2808 \)
Some LHC parameters

• Centre-of-mass energy
 – $\sqrt{s} = 14$ TeV for proton-proton collisions
 • c.f. 2 TeV at Tevatron collider
 • Equivalent to $\sim 100,000$ TeV or 10^{17} eV fixed-target beam energy
 – $\sqrt{s} = 6$ TeV *per nucleon* for Pb-Pb collisions

• Luminosity
 – $L = 10^{34}$ cm$^{-2}$s$^{-1}$ for proton-proton collisions in ATLAS and CMS
 • c.f. $L = 10^{32}$ cm$^{-2}$s$^{-1}$ at Tevatron
 – $L = 10^{27}$ cm$^{-2}$s$^{-1}$ for Pb-Pb collisions (in ALICE and also ATLAS+CMS)

• Note: enormous energy stored in proton beams
 – 331 MJ/beam (enough to melt 500 kg of copper)!
 • Rely on safe ejection of beams into beam dumps at end of coast
 • Most of the protons used up in beam-beam collisions in experimental areas
More LHC parameters

• Protons circulate in bunches (i.e. not continuous beam)
 – Bunch spacing is 25 ns in time (i.e. 7.5 meters in distance)
 • Bunch-crossing rate is 40 MHz

• Total proton-proton cross-section $\sigma \sim 100$ mb
 – Interaction rate at $L = 10^{34}$ cm$^{-2}$s$^{-1}$ is $R \sim 10^{9}$ Hz
 • On average ~ 25 interactions per bunch crossing
 – Background activity that complicates analysis of what happened in the interaction of interest
 – LHCb uses $L = 2 \times 10^{32}$ cm$^{-2}$s$^{-1}$ to maximize rate of single-interaction bunch crossings
 • Different focusing of beams to ATLAS and CMS
 – Rate much lower for heavy-ion case
 • $R \sim 10^{4}$ Hz for Pb-Pb (low luminosity)
 – Much less than bunch-crossing rate (BC period = 125 ns for Pb ions)
Luminosity for LHCb $L = 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

- LHCb can operate concurrently with ATLAS and CMS
 - Different “optics” – less focussed beams – larger σ

$$L = \frac{N_{b1} N_{b2} f_{rev} k_b}{2\pi \sqrt{(\sigma_{x_1}^2 + \sigma_{x_2}^2)(\sigma_{y_1}^2 + \sigma_{y_2}^2)}} \cdot \exp \left\{ -\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x_1}^2 + \sigma_{x_2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y_1}^2 + \sigma_{y_2}^2)} \right\}$$

- Beam sizes at the IP (horizontal & vertical)
- Beam-beam offsets (horizontal & vertical)
- Bunch intensities
- Number of bunches
Illustration with CMS detector
Multiple interactions per BC = “pile-up”
Has strong impact on detector designs

- Need detectors with fast time response ~ “exposure time”
 - Pile up in a single bunch crossing already presents a challenge!
 - Except in the case of ALICE where the rate of heavy-ion collisions is much less than the bunch-crossing frequency
- Need fine detector granularity to be able to reconstruct the “event”
 - Minimize the probability of pile-up in the same detector element as an interesting object
 - E.g. probability for energy from the “pile-up” interactions being deposited in the calorimeter cell hit by a photon in an H → γγ decay
Physics Objectives (ATLAS and CMS)
(see lectures of Michelangelo)

- Search for and study of new physics in ATLAS and CMS
 - Origin of electro-weak symmetry breaking (m_W and m_Z)
 - Higgs boson (or bosons)
 - Alternative schemes
 - SUSY
 - squark and gluinos have large cross sections
 - Compositeness
 - Leptoquarks
 - W' and Z'
 - Extra dimensions
 - KK excitations, black holes
 - The unpredicted!
 - Very important to be open to this in our event selection and analysis
 - LHC has an order of magnitude more centre-of-mass energy and two orders of magnitude more luminosity compared to today’s most powerful machine
Physics Objectives (ATLAS and CMS)

- **Standard Model production processes**
 - W, Z, direct-photon production
 - Jet production (including multi-jet production)
 - Interesting in their own right
 - Must be understood as backgrounds to new physics
 - Can be done with comparatively very little integrated luminosity
 - It will take some time before the LHC is tuned to reach its full luminosity

- **Precision measurements**
 - W mass and top mass
 - Important for consistency checks with Higgs studies
Physics Objectives (ALICE)

Heavy-ion programme

- Heavy-ion collisions will produce extremely high energy density
 - Search for evidence of quark-gluon plasma using simultaneous signatures
 - ALICE experiment is dedicated to this activity
 - ATLAS and CMS will also contribute in a few areas
Physics Objectives (LHCb)

• LHCb aims to perform a broad programme of B-physics studies
 – ATLAS and CMS will also contribute significantly in some areas, although this is not their top priority and the detectors are not optimised for these studies
• \(CP \) violation in many channels with very high statistics
 – Extend precision beyond \(e^+e^- \) B factories
 – Including \(B_s \) decays
• \(B_s \) mesons
 – Precise measurement of oscillation period and lifetime difference between mass eigenstates
• Measurements of rare decays
 – Provide indirect tests on physics beyond the Standard Model
What do we actually measure?

• The detectors give information on comparatively long-lived particles that are generally the decay products of the fundamental objects that we wish to study
 – We do not directly “see”:
 • Up, down, charm, strange and beauty quarks, and gluons (that manifest themselves as jets of hadrons)
 • Top quarks that decay rapidly (e.g. $t \rightarrow bW$)
 • W and Z bosons that decay rapidly to quarks or leptons
 • Higgs bosons
 • Etc
 – We do “see” somewhat more directly:
 • Electrons
 • Muons
 • Photons
 • Long-lived charged and neutral hadrons (which may form jets)
 • Missing transverse momentum (e.g. due to high transverse momentum neutrinos)
Generic concept of detector

• Collisions take place in centre of detector
 – Collision products move outwards from the centre

• Trajectories of charged particles are measured
 – Solenoid magnetic field, so particles follow helical paths
 • \(p = 0.3 \times B \times r \times Q \) used to determine momentum from radius of curvature
 (assuming charge \(Q = 1 \))

• Calorimeters measure energy deposited by electrons, photons, and hadrons
 – Calorimeters are sufficiently thick that almost all energy is absorbed, apart from muons (only minimally ionising) and neutrinos [and possibly other particles beyond those of the Standard Model]

• Trajectories of remaining charged particles (= muons) are measured
 – Provides muon identification and additional information on momentum
Generic detector (simplified)
Additional information

• The inner tracking detectors may provide additional information for particle identification
 – Hadron identification by Cerenkov or time-of-flight techniques
 • Important in LHCb, e.g. for K/π separation in B decays
 • Important in ALICE, e.g. for strangeness-enhancement studies
 – Electron identification via transition-radiation signature
 • Used in ATLAS to enhance purity of electron selection
 – Particle identification from ionisation (dE/dx) measurements

• Reconstructed tracks can be extrapolated to search for primary and secondary vertices
 – Determine time of decay of short-lived particles
 • Important for B-physics studies (e.g. time-dependent CP violation)
 – Separate b-quark jets from light-quark and gluon jets
 • Important in top and Higgs physics studies
Particle identification: Time of Flight

- Charged particles can be identified from their mass that can be determined by measuring their velocity in addition to their momentum.
- A rather direct way to measure velocity is to measure the time taken by the particles to move between two points.

E.g. multi-gap RPC detectors

Technique used in ALICE
Particle identification: Cerenkov light

- Charged particles that traverse a medium with a velocity higher than the speed of light in that medium radiate Cerenkov light
 - Determine velocity from Cerenkov angle
 - Technique used in ALICE and in LHCb

\[
\cos \theta_c = \frac{1}{\beta n} = \frac{1}{\frac{v}{c} n}
\]
Particle identification: Transition Radiation

- When an ultra-relativistic charged particle (i.e. electron with $\beta \gamma > 1000$) traverses boundaries between materials of different refractive indices, they emit transition radiation.
- The TR X-rays can be detected and used to identify electrons.
- This technique is used in ALICE and ATLAS.

![Figure 3-25 Pion efficiency as a function of p_T in various pseudorapidity intervals for 90% electron efficiency.](image)
Particle identification: dE/dx
Definition of term “event”

• In high-energy particle colliders (Tevatron, HERA, LEP, LHC), the particles in the counter-rotating beams are bunched
 – Bunches cross at regular intervals
 • Interactions only occur during the bunch-crossings
 – The “trigger” (an on-line system of electronics and computers – see later) has the job of selecting the bunch-crossings potentially of interest for physics analysis, i.e. those containing interactions of interest

• I will use the term “event” to refer to the record of all the products of a given bunch-crossing (plus any activity from other bunch-crossings that gets recorded along with this)
 – Be aware (beware!): the term “event” is not uniquely defined!
 • Some people use the term “event” for the products of a single interaction between the incident particles
 – People sometimes unwittingly use “event” interchangeably to mean different things!
Transverse momentum and pseudo-rapidity

- Very often use transverse momentum (p_T) and pseudo-rapidity (η) as variables in hadron-collider physics
 - p_T is momentum transverse to the beam direction
 - Not same definition as in e^+e^- experiments
 \[\eta \equiv - \ln(\tan(\theta/2)) \equiv y \equiv \frac{1}{2} \ln((E+p_z)/(E-p_z)) \]
 - In central region, hadron η distribution is approximately flat at fixed p_T
 - In central region, hadron η distribution is approximately flat at fixed p_T

- Considering particle distribution in polar angle θ, there is a high concentration of high-momentum (but low-p_T) particles at small angles relative to the two proton beams
 - The high flux of particles originating from proton-proton collisions creates a challenging radiation environment for detectors and electronics
 - Radiation-resistant detectors
 - Radiation-hard (or tolerant) electronics
 - Need to consider “noise” signals induced in detectors by the radiation as well as conventional noise signals
How do we reconstruct an “event”...

- **Start with signals seen in the detectors**
 - Points in space along charged particle trajectories
 - Energies measured in calorimeter cells
 - Signals from particle-identification detectors

- **Reconstruct quantities more closely related to particles**
 - Parametrize trajectory of charged-particle “tracks” in the inner tracking detectors and in the external muon detectors
 - Position and direction at some “start point”; radius of curvature
 - Infer charge sign and momentum (assuming $|Q| = 1$)
 - Parametrize energy deposits in the calorimeters in terms of “clusters”
 - Energy
 - Longitudinal and lateral shape
 - Can (e.g.) test consistency with shower from isolated electron or photon
 - Direction of energy flow
Generic detector (simplified)
Reconstruction of muons

- Combine information from muon detection system and the inner tracking detectors to get information on muon candidates
 - Muon charge sign and momentum vector at a given point in space
- Know with some confidence that this is really a muon, but there are backgrounds at some level
 - E.g. decays in flight of charged pions and kaons ($\pi \rightarrow \mu \nu$, $K \rightarrow \mu \nu$)
- Small probability to match the wrong inner-detector track to the muon-spectrometer track
 - Very small probability for fake muon-spectrometer tracks due to spurious hits
Reconstruction of electrons and photons

- **Reconstruct electrons and photons**
 - Combine information from the calorimeters and the inner tracking detectors
 - Electrons and photons identified as narrow clusters in electromagnetic calorimeters
 - Electrons have associated track; can check consistency of parameters between cluster and track \((p / E, \text{impact point} / \text{cluster centre}, \text{etc.})\)
 - Photons have no associated track
 - For many interesting processes, the electrons and photons are “isolated”, whereas the candidates are often in jets for background processes
 - Genuine electrons from charm and beauty decays
 - Photons from \(\pi^0\) decays (which may “convert” to given electrons)
 - Misidentified hadrons
 - Background comes from misidentified jets (dominant high-\(p_T\) process)
 - Also electrons may be misidentified as photons and vice versa
Reconstruction of jets

- Jets are the dominant high-p_T process at LHC
 - Interesting in their own right
 - Important source of background when searching for other physics processes
- Reconstruction is rather straightforward in principle
 - Comparatively broad clusters of energy in the calorimeters
 - Associated tracks in the inner detectors for the charged hadrons
- Very high rate of jets extending to extremely large transverse momentum
Features that distinguish interesting processes from pile-up and background

• Most of the particles from random (“minimum-bias”) proton-proton interactions are low-p_T hadrons
 – Applying a cut on the reconstructed tracks / clusters of $p_T \sim 2$ GeV eliminates almost all of the activity
 – Concentrating on electrons, muons and photons gives particularly clean signatures for extracting physics signals
 • Requiring “isolation” reduces the background from hadronic jets
 – Missing transverse energy (i.e. momentum imbalance in the transverse plane) is also a very powerful signature

• Extensive studies of the physics potential of the experiments have demonstrated that in many cases the most important remaining backgrounds to new physics will involve events with genuine W or Z bosons, or top quarks
18 superimposed pp collisions, as seen by internal part of CMS silicon central tracker. Among them 4 muons from a higgs decay.

“Exposure time” of one BC (25 ns)

Reconstructed tracks of $p_t > 2$ GeV. Among them well visible 4 muons from the higgs decay

Muons coloured in yellow