Flavour Physics and CP Violation

Robert Fleischer
CERN, Department of Physics, Theory Division

5th Workshop on Particle Physics
NCP, Islamabad, Pakistan, 20–25 November 2006
Important Results from Lecture II

\[
\frac{\Gamma(B_q^0(t \to f)) - \Gamma(B_q^0(t \to \bar{f}))}{\Gamma(B_q^0(t \to f)) + \Gamma(B_q^0(t \to \bar{f}))} = \frac{A_{\text{CP}}^\text{dir} \cos(\Delta M_q t) + A_{\text{CP}}^\text{mix} \sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - A_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2)}
\]

- **Amplitude relations** allow us in several cases to eliminate the hadronic matrix elements (\(\rightarrow \text{CKM amplitude dominates}\) (e.g. \(B_d \to \psi \, \text{KS}\)):
 - hadronic matrix elements cancel \(\Rightarrow\)
- Otherwise amplitude relations ...

- **Amplitude relations** allow us in several cases to eliminate the hadronic matrix elements (\(\rightarrow \text{CKM amplitude dominates}\) (e.g. \(B_d \to \psi \, \text{KS}\)):
 - hadronic matrix elements cancel \(\Rightarrow\)
- Otherwise amplitude relations ...

- **Amplitude relations** allow us in several cases to eliminate the hadronic matrix elements (\(\rightarrow \text{CKM amplitude dominates}\) (e.g. \(B_d \to \psi \, \text{KS}\)):
 - hadronic matrix elements cancel \(\Rightarrow\)
- Otherwise amplitude relations ...

\[
\begin{align*}
\mathcal{A}_{\text{CP}}^\text{dir} &= \frac{1 - |\xi_f^{(q)}|^2}{1 + |\xi_f^{(q)}|^2} = \frac{|A(B_q^0 \to f)|^2 - |A(B_q^0 \to \bar{f})|^2}{|A(B_q^0 \to f)|^2 + |A(B_q^0 \to \bar{f})|^2} & \text{"direct" CP violation} \\
\mathcal{A}_{\text{CP}}^\text{mix} &= \frac{2 \, \text{Im} \, \xi_f^{(q)}}{1 + |\xi_f^{(q)}|^2} & \Rightarrow \text{"mixing-induced" CP violation} \\
A_{\Delta \Gamma} &= \frac{2 \, \text{Re} \, \xi_f^{(q)}}{1 + |\xi_f^{(q)}|^2} & \Rightarrow \text{not independent from } \mathcal{A}_{\text{CP}}^\text{dir} \text{ and } \mathcal{A}_{\text{CP}}^\text{mix}
\end{align*}
\]

\[
\xi_f^{(q)} \sim e^{-i\phi_q} \left[\frac{A(B_q^0 \to f)}{A(B_q^0 \to f)} \right]
\]

\[
\phi_q^{\text{SM}} = 2 \arg(V_{tq}^* V_{tb}) = \begin{cases} +2\beta & (q = d) \\ -2\delta\gamma & (q = s) \end{cases}
\]
Lecture III: Moving Towards the LHC

• How Could New Physics (NP) Enter the B-Physics Landscape?
 - General features and 2 popular avenues:
 1. NP at the decay amplitude level
 2. NP in $B_q^0 - B_q^0$ mixing
 - Implications of the B-factory data.

• Key Targets of the B-Physics Programme at the LHC:
 - Implications of the measurement of ΔM_s at the Tevatron.
 - $B_s \rightarrow J/\psi \phi$: “golden” channel to search for NP in $B_s^0 - B_s^0$ mixing.
 - $B_s \rightarrow D_s^\pm K^\mp$, $B_s \rightarrow K^+ K^-$: determinations of γ.
 - $B_{s,d} \rightarrow \mu^+ \mu^-$, $B_d \rightarrow K^{*0} \mu^+ \mu^-$: rare decay NP probes.
How Could New Physics Enter the B-Physics Landscape?
Twofold Impact of NP: Effective Hamiltonians ...

• **Possibility I:** Modification of the “Strength” of the SM Operators

 – New short-distance functions, which depend on the NP parameters, such as masses of charginos, squarks, $\tan \beta \equiv v_2/v_1$ in the MSSM.
 – The NP particles enter in new box and penguin diagrams, and are “integrated out”, as the W boson and the top quark:

 $$C_k(\mu = M_W) \rightarrow C_k^{\text{SM}} + C_k^{\text{NP}}$$

 initial conditions for RG evolution

 – The C_k^{NP} may also involve new CP-violating phases.

• **Possibility II:** New Operators

 – Operators, which are absent or strongly suppressed in the SM, may actually play an important rôle:

 $$\{Q_k\} \rightarrow \{Q_k^{\text{SM}}, Q_l^{\text{NP}}\}$$

 operator basis

 – In general, new sources of flavour and CP violation.
A Brief Roadmap of Quark-Flavour Physics

- CP-B studies through various processes and strategies:

\[
B \rightarrow \pi\pi \text{ (isospin)}, \ B \rightarrow \rho\pi, \ B \rightarrow \rho\rho
\]

\[
R_b \ (b \rightarrow u, c\ell\bar{\nu}_\ell)
\]

\[
R_t \ (B^{0}_{q}B^{0}_{q} \text{ mixing})
\]

\[
\begin{align*}
B \rightarrow \pi K & \text{ (penguins)} \\
\{B^\pm_u \rightarrow K^\pm D \} & \text{ only trees} \\
B^0_d \rightarrow K^{*0} D \\
B^\pm_c \rightarrow D^\pm_s D \\
B^\pm_d \rightarrow D^{(*)\mp} & : \gamma + 2\beta \text{ only trees} \\
B^0_s \rightarrow D^{\pm}_s K^\mp & : \gamma + \phi_s
\end{align*}
\]

- Moreover “rare” decays: \(B \rightarrow K^*\gamma, \ B_{d,s} \rightarrow \mu^+\mu^-, \ K \rightarrow \pi\nu\bar{\nu}, \ldots \)
 - Originate from loop processes in the SM.
 - Interesting correlations with CP-B studies.

New Physics \(\Rightarrow \) Discrepancies \(\rightarrow \) 2 popular avenues ...
1. **New Physics @ Amplitude Level:**

- Typically *small* effects if SM tree processes play the dominant rôle.

- Potentially *large* effects in the penguin sector through new particles in the loops or new contributions at the tree level: e.g. SUSY, Z' models.

→ hot topics ...
Key Example: $B_d \to \phi K_S$

- **Decay in CP eigenstate:** \((+1) \times (+1) \times (-1)^1 = -1. \)

- **Structure of the decay amplitude:**

 \[
 K_S = \left(K^0 + \bar{K}^0 \right) / \sqrt{2} \\
 A(B_d^0 \to \phi K_S) = \lambda_u^{(s)} A_P^u + \lambda_c^{(s)} A_P^c + \lambda_t^{(s)} A_P^t
 \]

- **Unitarity of the CKM matrix:**

 \[
 \lambda_t^{(s)} = -\lambda_c^{(s)} - \lambda_u^{(s)} \Rightarrow \\
 A(B_d^0 \to \phi K_S) \propto \left[1 + \lambda^2 b e^{i\Theta} e^{i\gamma} \right] \\
 be^{i\Theta} = \left(\frac{R_b}{1 - \lambda^2} \right) \left[\frac{A_P^u - A_P^t}{A_P^c - A_P^t} \right] \sim O(1)
 \]
• Consequently:

\[\xi_{\phi K_S}^{(d)} = e^{-i\phi_d} \left[1 + \lambda^2 b e^{i\Theta} e^{-i\gamma} \right] \left[1 + \lambda^2 b e^{i\Theta} e^{i\gamma} \right] \]

• Since the essentially “unknown” hadronic parameter \(b e^{i\Theta} \) enters in a
doubly Cabibbo-suppressed way (\(\lambda \equiv |V_{us}| = 0.22 \)):

\[
\begin{align*}
\mathcal{A}_{\text{CP}}^{\text{dir}}(B_d \rightarrow \phi K_S) &= 0 + \mathcal{O}(\lambda^2) \\
\mathcal{A}_{\text{CP}}^{\text{mix}}(B_d \rightarrow \phi K_S) &= -\sin \phi_d + \mathcal{O}(\lambda^2) \equiv -(\sin 2\beta)\phi K_S \\
\end{align*}
\]

• Moreover:

\[
\mathcal{A}_{\text{CP}}^{\text{mix}}(B_d \rightarrow \psi K_S) = -\sin \phi_d + \mathcal{O}(\lambda^3) \equiv -(\sin 2\beta)\psi K_S
\]

\[\Rightarrow (\sin 2\beta)\phi K_S = (\sin 2\beta)\psi K_S + \mathcal{O}(\lambda^2) \quad (\ast)\]

[R.F. ('97); Grossman & Worah ('97); London & Soni ('97)]

• \(B_d \rightarrow \phi K_S \) is a sensitive probe for new physics:

– Dominated by QCD penguins

 [London & Peccei ('89); Deshpande & Trampetic ('90); ...]

– EW penguins have a sizeable impact [R.F. ('94); Deshpande & He ('94)]

– Model-independent NP analyses [R.F. & Mannel ('01)]

\[\rightarrow \text{NP may well violate (\ast), and may induce } \mathcal{A}_{\text{CP}}^{\text{dir}}(B_d \rightarrow \phi K_S) \neq 0!\]
CP Violation in $b \rightarrow s$ Penguin-Dominated Modes

- Various channels of this kind, with different hadronic effects. Example: $B_d^0 \rightarrow \pi^0 K_S$ has colour-suppressed tree, in contrast to $B_d^0 \rightarrow \phi K_S$...

- NP may also enter differently: \Rightarrow do not average CP asymmetries!

\[\sin(2\beta_{\text{eff}}) = \sin(2\phi_1^{\text{eff}}) \]

Preliminary

\[C_f = -A_f \]

NP could be present, but still cannot be resolved \Rightarrow stay tuned ...
Another Example: $B \rightarrow \pi K$ Puzzle

- **Systematic strategy in 3 steps:**

 Step 1.
 $B \rightarrow \pi \pi$ Decays described within SM (EW –Penguins small)
 → Isospin Symmetry
 → Hadronic Parameters in $B \rightarrow \pi \pi$
 → Sizable Departures from QCDF, PQCD

 Step 2.
 d, θ, x, Δ + SU(3)$_F$
 → Hadronic Parameters in $B \rightarrow \pi K$
 → Enhanced EWP with large New Complex Phase
 + γ

 Step 3.
 Correlations between $B \rightarrow \pi K$, Rare K and B Decays and other Processes
 → Implications for Rare K and B Decays sensitive to EWP

Comprehensive analysis! Let’s here just have a look at ...

• Observables with a sizeable impact of EW penguins: q, ϕ

$$R_c \equiv 2 \left[\frac{\text{BR}(B^+ \to \pi^0 K^+) + \text{BR}(B^- \to \pi^0 K^-)}{\text{BR}(B^+ \to \pi^+ K^0) + \text{BR}(B^- \to \pi^- K^0)} \right]$$

$$R_n \equiv \frac{1}{2} \left[\frac{\text{BR}(B_d^0 \to \pi^- K^+)}{\text{BR}(B_d^0 \to \pi^0 K^0) + \text{BR}(\bar{B}_d^0 \to \pi^+ K^-)} \right]$$

→ NP in EWPs!?
• (Preliminary) Status after ICHEP ’06:

- The SM prediction is very stable, with further reduced errors!
- The B-factory data have moved quite a bit towards the SM.
- Suggested by constraints from rare $B \rightarrow X_s\ell^+\ell^-$ decays ...

- Furthermore puzzling CP asymmetries: $B_d^0 \rightarrow \pi^0 K_S$, $B^\pm \rightarrow \pi^0 K^{\pm}$.

NP could be present, but still cannot be resolved \rightarrow stay tuned ...
2. New Physics in $B_q^0 - \bar{B}_q^0$ mixing:

- NP particles in boxes or tree contributions (e.g. SUSY, Z' models):

\[
M_{12}^q = M_{12}^{q,SM} (1 + \kappa_q e^{i\sigma_q}) \Rightarrow
\]

- Mass difference: $\Delta M_q = \Delta M_q^{SM} |1 + \kappa_q e^{i\sigma_q}|$

- Mixing phase: $\phi_q = \phi_q^{SM} + \phi_q^{NP} = \phi_q^{SM} + \arg(1 + \kappa_q e^{i\sigma_q})$

Constraints in the NP Space of $B_q^0 - \bar{B}_q^0$ Mixing

- Contours in the $\sigma_q - \kappa_q$ plane following from $\rho_q \equiv \Delta M_q / \Delta M_q^{SM}$:

 \[
 [0.6 \leq \rho_q \leq 1.4]
 \]

- Contours in the $\sigma_q - \kappa_q$ plane following from the NP phase ϕ_q^{NP}:

 \[
 \left[10^\circ \leq |\phi_q^{NP}| \leq 170^\circ \right]
 \]
Implications of the B-Factory Data for the B_d System

- Determination of $\rho_d = \Delta M_d / \Delta M_d^{\text{SM}}$: \[\Delta M_d^{\text{SM}} \text{ required, involving ...} \]
 - CKM parameter $|V_{td}^* V_{tb}|$: \[\rightarrow \text{governed by } \gamma, \text{ if unitarity is used.} \]
 - Hadronic parameter $f^2_{B_d} \hat{B}_{B_d}$: lattice \[\rightarrow \text{two benchmark sets:} \]
 * JLQCD results (2 flavours of dynamical light Wilson quarks).
 * f_{B_d} from HPQCD (3 dynamical flavours) with \hat{B}_{B_d} from JLQCD.

- Determination of the NP phase: \[\phi_d^{\text{NP}} = (2\beta)\psi K_S - (2\beta)_{\text{true}} \]
 - ϕ_d^{NP} is governed by $R_b \propto |V_{ub}/V_{cb}|$;
 - Unfortunately, discrepancy between $|V_{ub}|_{\text{excl}}$ and $|V_{ub}|_{\text{incl}}$...

JLQCD and $\phi_d^{\text{NP}}|_{\text{excl}} = -(2.5 \pm 8.0)^\circ$
(HP+JL)QCD and $\phi_d^{\text{NP}}|_{\text{incl}} = -(10.1 \pm 4.6)^\circ$
Key Targets of the \textit{B}-Physics Programme at the LHC

\rightarrow high statistics and \textit{complementarity} to B factories:

\textit{fully exploit the B_s-meson system!}
General Features of the B_s System (see Lecture II)

- **Rapid B^0_s–$ar{B}^0_s$ oscillations:** $\Delta M_s^{SM} = O(20 \text{ ps}^{-1}) \gg \Delta M_d^{exp} = 0.5 \text{ ps}^{-1}$

 \Rightarrow challenging to resolve them experimentally!

- **The width difference $\Delta \Gamma_s$ is expected to be of $O(10\%)$:**

 - Experimental status: $B_s \rightarrow J/\psi \phi \oplus$ Tevatron \Rightarrow

 $\frac{\Delta \Gamma_s}{\Gamma_s} = \begin{cases} 0.24^{+0.28+0.03}_{-0.38-0.04} & [D0 ('05)] \\ 0.65^{+0.25}_{-0.33} \pm 0.01 & [CDF ('05)] \end{cases}$ LHCb \rightarrow precision ~ 0.01

 - May provide interesting CPV studies through “untagged” rates:

 $\langle \Gamma(B_s(t) \rightarrow f) \rangle \equiv \Gamma(B^0_s(t) \rightarrow f) + \Gamma(\bar{B}^0_s(t) \rightarrow f)$

 * The rapidly oscillating $\Delta M_s t$ terms cancel!
 * Various “untagged” strategies were proposed.

 [Dunietz ('95); R.F. & Dunietz ('96); Dunietz, Dighe & R.F. ('99); ...]

- **The CP-violating phase of B^0_s–$ar{B}^0_s$ mixing is tiny in the SM:**

 $\phi_s^{SM} = -2 \lambda^2 \eta \approx -2^\circ$ \Rightarrow interesting for NP searches (see below)!
Hot News of this Spring:

• Signals for $B_s^0 - \bar{B}_s^0$ mixing at the Tevatron:

 – For many years, only lower bounds on ΔM_s were available from the LEP (CERN) experiments and SLD (SLAC)!

 – Finally, the value of ΔM_s could be pinned down:

 * D0: \Rightarrow two-sided bound $17 \text{ ps}^{-1} < \Delta M_s < 21 \text{ ps}^{-1}$ (90% C.L.)

 $\Rightarrow 2.5 \sigma$ signal at $\Delta M_s = 19 \text{ ps}^{-1}$

 * CDF: $\Delta M_s = [17.77 \pm 0.10(\text{stat}) \pm 0.07(\text{syst})] \text{ ps}^{-1} \approx 5\sigma$

• These new results have already triggered considerable theoretical activity:

Space for NP

in the

B_s-Meson System:

\[M_{12}^s = M_{12}^{s,SM} \left(1 + \kappa_s e^{i\sigma_s} \right) \]

→ in analogy to the B_d system ...

Constraints on NP through ΔM_s

- **CKM unitarity and Wolfenstein expansion:** $|V_{ts}^* V_{tb}| = |V_{cb}| \left[1 + \mathcal{O}(\lambda^2) \right]$

 \Rightarrow no information on γ and R_b needed (in contrast to ΔM_d)!

- **Numerical results:**
 \[
 \begin{align*}
 \Delta M_s^{\text{SM}} \bigg|_{\text{JLQCD}} &= (16.1 \pm 2.8) \text{ ps}^{-1} \\
 \rho_s &\equiv \frac{\Delta M_s}{\Delta M_s^{\text{SM}}} \bigg|_{\text{JLQCD}} = 1.08^{+0.03}_{-0.01}(\text{exp}) \pm 0.19(\text{th}) \\
 \Delta M_s^{\text{SM}} \bigg|_{(\text{HP+JL})\text{QCD}} &= (23.4 \pm 3.8) \text{ ps}^{-1} \\
 \rho_s \bigg|_{(\text{HP+JL})\text{QCD}} &= 0.74^{+0.02}_{-0.01}(\text{exp}) \pm 0.18(\text{th})
 \end{align*}
 \]

- **Allowed regions in the $\sigma_s-\kappa_s$ plane:**

1. Very recent result by the HPQCD collaboration: $\Delta M_s^{\text{SM}} = 20.3(3.0)(0.8) \text{ ps}^{-1}$ [hep-lat/0610104].
Constraints on NP through ΔM_s and ΔM_d

- The ratio $\Delta M_s/\Delta M_d$ involves just an $SU(3)$-breaking parameter:

\[\xi \equiv \frac{f_{B_s} \hat{B}_{B_s}^{1/2}}{f_{B_d} \hat{B}_{B_d}^{1/2}} \rightarrow \text{reduced th. uncertainty as compared to } f_{B_q} \hat{B}_{B_q}^{1/2}. \]

- Usually determination of UT side R_t. Different avenue (CKM unitarity):\(^2\)

\[\frac{\rho_s}{\rho_d} = \lambda^2 \left[1 - 2R_b \cos \gamma + R_b^2 \right] \left[1 + O(\lambda^2) \right] \frac{1}{\xi^2} \frac{M_{B_d}}{M_{B_s}} \frac{\Delta M_s}{\Delta M_d} \]

\[= R_t^2 \]

\[\rightarrow \frac{\rho_s}{\rho_d} \bigg|_{2010} = 1.07 \pm 0.09(\gamma)^{+0.06}_{-0.08}(\xi) = 1.07 \pm 0.12 \Rightarrow \square \]

\(^2\)Scenario for 2010: $\gamma = (65 \pm 20)^{\circ} \xrightarrow{\text{LHCb}} (70 \pm 5)^{\circ}$ with (HP+JL)QCD lattice values.
Golden Process to Search
for NP in $B_s^0 - \bar{B}_s^0$ Mixing:

$B_s^0 \rightarrow J/\psi \phi$

$\rightarrow B_s^0$ counterpart of $B_d^0 \rightarrow J/\psi K_S$...

Let’s have a closer look ...

• Decay topologies:

\[\lambda_c^{(s)} = V_{cs} V_{cb}^* \]

\[\lambda_j^{(s)} = V_{js} V_{jb}^* \quad (j \in \{u, c, t\}) \]

• Structure of the decay amplitude:

\[A(B_s^0 \rightarrow J/\psi \phi) = \lambda_c^{(s)}(A_T^c + A_P^c) + \lambda_u^{(s)} A_P^u + \lambda_t^{(s)} A_P^t \]

• Unitarity of the CKM matrix: \(\lambda_t^{(s)} = -\lambda_c^{(s)} - \lambda_u^{(s)} \Rightarrow \)

\[A(B_s^0 \rightarrow J/\psi \phi) \propto [1 + \lambda^2 ae^{i\vartheta} e^{i\gamma}] \]

\[ae^{i\vartheta} = \left(\frac{R_b}{1 - \lambda^2} \right) \left[\frac{A_P^u - A_P^t}{A_T^c + A_P^c - A_P^t} \right] \]
• There is an important difference with respect to $B_d^0 \to J/\psi K_S$:

 final state is an admixture of different CP eigenstates!

• *Angular distribution* of the $J/\psi \to \ell^+\ell^-\phi \to K^+K^-$ decay products:

 ⇒ the different CP eigenstates can be disentangled!

• *Time-dependent distribution* takes following form:

 \[
 f(\Theta, \Phi, \Psi; t) = \sum_k g^{(k)}(\Theta, \Phi, \Psi) b^{(k)}(t)
 \]

 – Kinematics is described by the $g^{(k)}(\Theta, \Phi, \Psi)$.
 – Time-dependent coefficients $b^{(k)}(t)$: → real or imaginary parts of

 \[
 A^*_f(t)A_f(t) = \langle (J/\psi\phi)_f | \mathcal{H}_{\text{eff}} | B_s^0(t) \rangle^* \langle (J/\psi\phi)_f | \mathcal{H}_{\text{eff}} | B_s^0(t) \rangle
 \]

 – f and \tilde{f}: specify the relative polarization of the J/ψ- and ϕ-mesons in given final-state configurations $(J/\psi\phi)_f$ and $(J/\psi\phi)_{\tilde{f}}$, respectively.
Structure of the Observables

- Consider linear pol. states of the vector mesons, which are longitudinal (0) or transverse to their directions of motion. In the latter case, the pol. states may be parallel (∥) or perpendicular (⊥) to one another.

- **Linear polarization amplitudes:** \(A_0(t), A_{∥}(t), A_{⊥}(t) \)
 - \(A_{⊥}(t) \) describes a CP-odd final-state configuration.
 - \(A_0(t) \) and \(A_{∥}(t) \) correspond to CP-even final-state configurations.
 - The observables \(b^{(k)}(t) \) are then given as follows:

 \[
 |A_f(t)|^2 \quad (f \in \{0, ||, ⊥\}) \\
 \text{Re}\{A_0^*(t)A_{∥}(t)\}, \quad \text{Im}\{A_f^*(t)A_{⊥}(t)\} \quad (f \in \{0, ||\}).
 \]

- **Application of the “standard” formalism to the \(A_f(t) \) (\(f \in \{0, ||, ⊥\} \)):**

 \[
 \xi_{(ψφ)}^{(s)}_f \propto e^{-iφ_s} \left[1 - 2i λ^2 a_f e^{iθ_f} \sin γ + O(λ^4) \right] \rightarrow e^{-iφ_s}
 \]

 \(^3\text{The hadronic penguin effects can be controlled through } B_d \rightarrow J/ψρ^0 \text{ [R.F. (1999)]} \).
Simple: Time-Dependent One-Angle Distribution

\[\frac{d\Gamma(t)}{d \cos \Theta} \propto \left(|A_0(t)|^2 + |A_\parallel(t)|^2 \right) \frac{3}{8} (1 + \cos^2 \Theta) + \left| A_\perp(t) \right|^2 \frac{3}{4} \sin^2 \Theta \]

- The angular dependence allows us to extract the following observables:

\[
P_+ (t) \equiv |A_0(t)|^2 + |A_\parallel(t)|^2, \quad P_- (t) \equiv |A_\perp(t)|^2
\]

- **Untagged data samples**: → untagged rates ...

\[
P_\pm (t) + \overline{P}_\pm (t) \propto \left[(1 \pm \cos \phi_s) e^{-\Gamma_L t} + (1 \mp \cos \phi_s) e^{-\Gamma_H t} \right]
\]

- **Tagged data samples**: → CP asymmetries ...

\[
\frac{P_\pm (t) - \overline{P}_\pm (t)}{P_\pm (t) + \overline{P}_\pm (t)} = \pm \frac{2 \sin (\Delta M_s t) \sin \phi_s}{(1 \pm \cos \phi_s) e^{+\Delta \Gamma_{st}/2} + (1 \mp \cos \phi_s) e^{-\Delta \Gamma_{st}/2}}
\]
\[\phi_s = -2\lambda^2 R_b \sin \gamma + \phi_{s\text{NP}} \approx \phi_{s\text{NP}} \] \[
Rightarrow
\]

• CP-violating NP effects would be indicated by the following features:

- The *untagged* observables depend on *two* exponentials;
- *Sizeable* values of the CP-violating asymmetries.

• These general features hold also for the full three-angle distribution:

- Much more involved than one-angle case [Dighe, Dunietz & R.F. (1999)].
- But provides additional information through the following terms:

\[\text{Re}\{A_{0}^*(t)A_\| (t)\}, \quad \text{Im}\{A_{f}^*(t)A_\perp(t)\} \quad (f \in \{0, \|\}). \]
- No experimental draw-back with respect to the one-angle case!

• Following these lines, \(\Delta \Gamma_s\) (see above) and \(\phi_s\) can be extracted:

- Note: \(\Delta \Gamma_s = \Delta \Gamma_s^{\text{SM}} \cos \phi_s\) [Grossman (1996)] \(\Rightarrow\) *reduction* of \(\Delta \Gamma_s\).
News from the Tevatron & Reach at the LHC

- **Very recent (preliminary) analysis by D0:** [D0Conference note 5144 ('06)]
 - Untagged, time-dependent three-angle $B_s \rightarrow J/\psi \phi$ distribution:
 \[
 \Rightarrow \phi_s = -0.79 \pm 0.56 \text{ (stat.)} \pm 0.01 \text{ (syst.)} = -(45 \pm 32 \pm 0.6)^\circ
 \]
 - Imposing also constraints form semilept. B decays: [D0note 5144-Conf ('06)]
 \[
 \Rightarrow \phi_s = -0.56^{+0.44}_{-0.41} = -(32^{+25}_{-23})^\circ
 \]
 \[
 \Rightarrow \text{still not stingently constrained, but very accessible @ LHC ...}
 \]

- **Experimental reach at the LHC:** [O. Schneider, M. Smizanska, T. Speer]
 - LHCb: $\sigma_{\text{stat}}(\sin \phi_s) \approx 0.031$ (1 year, i.e. 2 fb$^{-1}$) [0.013 (5 years)];
 - ATLAS & CMS: expect uncertainties of $\mathcal{O}(0.1)$ (1 year, i.e. 10 fb$^{-1}$).
Impact of CP Violation Measurements on σ_s, κ_s

- **Illustration through two scenarios (\sim 2010):**

 (i) $(\sin \phi_s)_{\text{exp}} = -0.04 \pm 0.02$: corresponds to the SM;

 (ii) $(\sin \phi_s)_{\text{exp}} = -0.20 \pm 0.02$: \rightarrow NP @ 10 σ [corresponds to the “tension” in the UT fits for $\kappa_s = \kappa_d$, $\sigma_s = \sigma_d$ \rightarrow “magnification” in the B_s system]

- **Remarks:**
 - It is very challenging to establish NP without new CP-violating effects.
 - But the data still leave a lot of space for such effects in specific NP scenarios (SUSY, Z', ...), which could be detected at the LHC!

 [Details: P. Ball & R.F., hep-ph/0604249 \oplus references therein]
Impact of ΔM_s^{exp} on NP Scenarios: Examples

Extra Z' boson with flavour non-diagonal couplings:

- **Illustration of the ΔM_s constraints under the following conditions:**
 - The Z couplings stay flavour diagonal, i.e. $Z-Z'$ mixing is negligible.
 - The Z' has flavour non-diagonal couplings only to left-handed quarks, which means that its effect is described by only one complex parameter.

- **The Z' model is characterized by the following parameter:**
 \[
 \rho_L e^{i\phi_L} \equiv \frac{g'M_Z}{gM_{Z'}} B^L_{sb} \sim 10^{-3}
 \]

- **Translation of the $\sigma_s-\kappa_s$ space into the $\phi_L-\rho_L$ space:**
 \[
 \kappa_s < 2.5 \Rightarrow \rho_L < 2.6 \times 10^{-3} \Rightarrow 1.5 \text{ TeV} \left(\frac{g'}{g}\right) \left|\frac{B^L_{sb}}{V_{ts}}\right| < M_{Z'}
 \]

[along Barger, Chiang, Jiang and Langacker, hep-ph/0405108; other recent analysis addressing also ΔM_s: Cheung et al., hep-ph/0604223; Baek et al., hep-ph/0607113]
MSSM in the mass insertion approximation:

- Illustration of the interplay between ΔM_s & mass insertions:

See also Becirevic et al. ('02); Ball, Khalil & Kou ('04); Ciuchini et al. ('06); Ciuchini & Silvestrini ('06); Endo & Mishima ('06); Khalil ('06); ...
Further Benchmark Decays

for the

LHCb Experiment

→ very rich physics programme ...
Two Major Lines of Research

1. **Precision measurements of γ:**
 - Tree strategies, with expected sensitivities after 1 year of taking data:
 - $B^0_s \rightarrow D^+_s K^\pm$: $\sigma_\gamma \sim 14^\circ$
 - $B^0_d \rightarrow D^0 K^*$: $\sigma_\gamma \sim 8^\circ$... to be compared with the current B-factory data: $\gamma \big|_{D^(*)K^(*)} = \begin{cases} (62^{+35}_{-25})^\circ & \text{(CKMfitter)} \\ (65 \pm 20)^\circ & \text{(UTfit)} \end{cases}$
 - $B^{\pm} \rightarrow D^0 K^\pm$: $\sigma_\gamma \sim 5^\circ$
 - Decays with penguin contributions:
 - $B^0_s \rightarrow K^+ K^-$ and $B^0_d \rightarrow \pi^+ \pi^-$: $\sigma_\gamma \sim 5^\circ$
 - $B^0_s \rightarrow D^+_s D^-_s$ and $B^0_d \rightarrow D^+_d D^-_d$

2. **Analyses of rare decays which are absent at the SM tree level:**
 - $B^0_s \rightarrow \mu^+ \mu^-$, $B^0_d \rightarrow \mu^+ \mu^-$
 - $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$, $B^0_s \rightarrow \phi \mu^+ \mu^-$; ...

→ let's have a closer look at some decays ...

[For a recent experimental overview, see A. Schopper, hep-ex/0605113]
CP Violation in $B_s \rightarrow D_s^\pm K^\mp$ and $B_d \rightarrow D^\pm \pi^\mp$

- **General case:**

 \[B_0^q \rightarrow D_q \bar{u}_q \propto e^{i\gamma} \]

 \[B_0^q \rightarrow D_q \bar{u}_q \propto e^{i\phi_q} \]

 \[B_0 \rightarrow D \bar{u}_q \propto e^{i\phi_q + \gamma} \]

 \[\phi_q + \gamma \]

- $q = s$: $D_s \in \{D_s^+, D_s^{*+}, \ldots\}$, $u_s \in \{K^+, K^{*+}, \ldots\}$:

 \[\rightarrow \text{hadronic parameter } X_s e^{i\delta_s} \propto R_b \Rightarrow \text{large interference effects!} \]

- $q = d$: $D_d \in \{D^+, D^{*+}, \ldots\}$, $u_d \in \{\pi^+, \rho^+, \ldots\}$:

 \[\rightarrow \text{hadronic parameter } X_d e^{i\delta_d} \propto -\lambda^2 R_b \Rightarrow \text{tiny interference effects!} \]
• \(\cos(\Delta M_q t) \) and \(\sin(\Delta M_q t) \) terms of the time-dependent decay rates:

\[
\Rightarrow \text{theoretically clean determination of } \phi_q + \gamma \quad \phi_q \text{ known} \quad [\gamma]
\]

[Dunietz & Sachs (1988); Aleksan, Dunietz & Kayser (1992); Dunietz (1998); ...]

• However, there are also problems:

– We encounter an eightfold discrete ambiguity for \(\phi_q + \gamma \)?

– In the \(q = d \) case, an additional input is required to extract \(X_d \) since \(\mathcal{O}(X_d^2) \) interference effects would have to be resolved \(\rightarrow \) impossible ...

• Combined analysis of \(B^0_s \rightarrow D_s^{(*)+}K^- \) and \(B^0_d \rightarrow D^{(*)+}\pi^- \): [R.F. (2003)]

\[
s \leftrightarrow d \Rightarrow U\text{-spin symmetry provides an interesting playground:}^4
\]

– An unambiguous value of \(\gamma \) can be extracted from the observables!

– To this end, \(X_d \) has not to be fixed, and \(X_s \) may only enter through a \(1 + X_s^2 \) correction, which is determined through untagged \(B_s \) rates!

– Promising first studies by LHCb:

^4The \(U \)-spin is an \(SU(2) \) subgroup of the \(SU(3)_F \) flavour-symmetry group, connecting \(d \) and \(s \) quarks in analogy to the conventional isospin symmetry, which relates \(d \) and \(u \) quarks to each other.
Both expressions now giving very interesting precision on γ. Right hand plot has precision of 5 degrees, and small systematic. Ambiguous solutions now excluded.

[Full U-Spin Symmetry: 5 years]

Consider, for example, ±20% U-spin symmetry breaking → shift of ±13 deg

20% U-spin breaking gives 3 degree shift

[1] (2)

[G. Wilkinson @ CKM 2005]
The $B_s \rightarrow K^+K^-$, $B_d \rightarrow \pi^+\pi^−$ System

- $B_s^0 \rightarrow K^+K^-$:

- $B_d^0 \rightarrow \pi^+\pi^−$:

$$
\Rightarrow \quad s \leftrightarrow d
$$
• Structure of the decay amplitudes in the Standard Model:

\[A(B_d^0 \to \pi^+ \pi^-) \propto e^{i\gamma} - de^{i\theta} \]

\[A(B_s^0 \to K^+ K^-) \propto e^{i\gamma} + \left(1 - \frac{\lambda^2}{\lambda^2}
ight) d' e^{i\theta'} \]

\[d e^{i\theta} = \frac{\text{"penguin"}}{\text{"tree"}} |_{B_d \to \pi^+ \pi^-}, \quad d' e^{i\theta'} = \frac{\text{"penguin"}}{\text{"tree"}} |_{B_s \to K^+ K^-} \]

\[[d, d']: \text{real hadronic parameters; } \theta, \theta': \text{strong phases} \]

• General form of the CP asymmetries:

\[A_{\text{dir}}(B_d \to \pi^+ \pi^-) = G_1(d, \theta, \gamma), \quad A_{\text{mix}}(B_d \to \pi^+ \pi^-) = G_2(d, \theta, \gamma, \phi_d) \]

\[A_{\text{dir}}(B_s \to K^+ K^-) = G'_1(d', \theta', \gamma), \quad A_{\text{mix}}(B_s \to K^+ K^-) = G'_2(d', \theta', \gamma, \phi_s) \]

• \(\phi_d = 2\beta \) (from \(B_d \to J/\psi K_S \)) and \(\phi_s \approx 0 \) are known parameters:

\[- A_{\text{dir}}(B_d \to \pi^+ \pi^-) \text{ } \& \text{ } A_{\text{mix}}(B_d \to \pi^+ \pi^-): \Rightarrow \boxed{d = d(\gamma)} \text{ (clean!)} \]

\[- A_{\text{dir}}(B_s \to K^+ K^-) \text{ } \& \text{ } A_{\text{mix}}(B_s \to K^+ K^-): \Rightarrow \boxed{d' = d'(\gamma)} \text{ (clean!)} \]
• Example:

- **Input parameter:**

 * $\phi_d = 43.4^\circ$, $\phi_s = -2^\circ$, $\gamma = 74^\circ$, $d = d' = 0.52$, $\theta = \theta' = 146^\circ$

- **CP asymmetries:**

 * $B_d \rightarrow \pi^+\pi^-$: $A_{\text{CP}}^{\text{dir}} = -0.37$, $A_{\text{CP}}^{\text{mix}} = +0.50$

 * $B_s \rightarrow K^+K^-$: $A_{\text{CP}}^{\text{dir}} = +0.12$, $A_{\text{CP}}^{\text{mix}} = -0.19$
• The decays $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ are related to each other through the interchange of all down and strange quarks:

$$U\text{-spin symmetry} \implies d = d', \theta = \theta'$$

- $d = d'$: \Rightarrow determination of $\gamma, d, \theta, \theta'$

- $\theta = \theta'$: \Rightarrow test of the $U\text{-spin symmetry}$!

• Detailed experimental feasibility studies show that the $B_s \rightarrow K^+K^-$, $B_d \rightarrow \pi^+\pi^-$ strategy is very promising for LHCb:

![Diagram showing experimental accuracy for γ of a few degrees!](CERN-LHCb/2003-123 & 124; talk by A. Sarti at Flavour LHC Workshop, October '06, CERN)
• **Recent news from the Tevatron:** [CDF Collaboration, hep-ex/0607021]

 Observation of \(B_s \rightarrow K^+ K^- \) **@ CDF**

 - 236 ± 32 events were seen, which correspond to the branching ratio
 \[
 \text{BR}(B_s \rightarrow K^+ K^-) = (33 \pm 5.7 \pm 6.7) \times 10^{-6};
 \]
 update @ BEAUTY ’06: \(\rightarrow (24.4 \pm 1.4 \pm 4.6) \times 10^{-6} \).

• **Theoretical prediction:** [Buras, R.F. Schwab & Recksiegel ('04)]

 - Requires the knowledge of an \(SU(3) \)-breaking from-factor ratio (which cancels in \(de^{i\theta} = d'e^{i\theta'} \)) [QCD sum rules: Khodjamirian et al. ('03)].

 - Dynamical assumptions (small annihilation) and \(B_d \rightarrow \pi^\mp K^\pm \) data:
 \[
 \Rightarrow \text{BR}(B_s \rightarrow K^+ K^-) = (35 \pm 7) \times 10^{-6}
 \]
 \(\Rightarrow \) **good agreement!**
The Rare Decays $B_q \rightarrow \mu^+\mu^- \ (q \in \{d, s\})$

- Originate from Z penguins and box diagrams in the Standard Model:

![Diagram of the process $B_q \rightarrow \mu^+\mu^-$]

$$
\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \left[\frac{\alpha}{2\pi \sin^2 \Theta_W} \right] V_{tq}^* V_{tb} \eta_Y Y_0(x_t) (\bar{b}q)_{V-A} (\bar{\mu}\mu)_{V-A}
$$

- α: QED coupling; Θ_W: Weinberg angle.
- η_Y: short-distance QCD corrections (calculated ...)
- $Y_0(x_t \equiv m_t^2/M_W^2)$: Inami–Lim function, with top-quark dependence.

- Hadronic matrix element: \rightarrow very simple situation:

- Only the matrix element $\langle 0 | (\bar{b}q)_{V-A} | B_q^0 \rangle$ is required: f_{B_q}

\Rightarrow belong to the cleanest rare B decays!
• **Most recent SM predictions:** [Blanke, Buras, Guadagnoli, Tarantino (’06)]

→ use the data for the ΔM_q to reduce the hadronic uncertainties:

$$\text{BR}(B_s \rightarrow \mu^+\mu^-) = (3.35 \pm 0.32) \times 10^{-9}$$
$$\text{BR}(B_d \rightarrow \mu^+\mu^-) = (1.03 \pm 0.09) \times 10^{-10}$$

• **Most recent experimental upper bounds from the Tevatron:**

 – CDF collaboration @ 95% C.L.: [CDF Public Note 8176 (2006)]
 $$\text{BR}(B_s \rightarrow \mu^+\mu^-) < 1.0 \times 10^{-7}, \quad \text{BR}(B_d \rightarrow \mu^+\mu^-) < 3.0 \times 10^{-8}$$

 – D0 collaboration @ 90% C.L. (95% C.L.): [D0note 5009-CONF (2006)]
 $$\text{BR}(B_s \rightarrow \mu^+\mu^-) < 1.9 (2.3) \times 10^{-7}$$

⇒ still a long way to go (?) → **LHC** (background under study)

• **However, NP may significantly enhance BR($B_s \rightarrow \mu^+\mu^-$):**

 – In SUSY scenarios: $\text{BR} \sim (\tan \beta)^6 \rightarrow$ dramatic enhancement (!);
 [see, e.g., Foster *et al.* and Isidori & Paride (’06) for recent analyses]

 – NP with modified EW penguin sector: sizeable enhancement.
The Rare Decay $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$

- **Key observable for NP searches:** Forward–Backward Asymmetry

$$A_{FB}(\hat{s}) = \frac{1}{d\Gamma/d\hat{s}} \left[\int_0^1 d(\cos \theta) \frac{d^2\Gamma}{d\hat{s} \, d(\cos \theta)} - \int_{-1}^0 d(\cos \theta) \frac{d^2\Gamma}{d\hat{s} \, d(\cos \theta)} \right]$$

- θ is the angle between the B^0_d momentum and that of the μ^+ in the dilepton centre-of-mass system,
- and $\hat{s} = s/M_B^2$, with $s = (p_{\mu^+} + p_{\mu^-})^2$.

- **Particularly interesting:**

$$A_{FB}(\hat{s}_0)|_{SM} = 0$$

[Burdman ('98); Ali et al. ('00); ...]

- The value of \hat{s}_0 is very robust with respect to hadronic uncertainties!
- SUSY extensions of the SM:

 \rightarrow may yield $A_{FB}(\hat{s})$ of opposite sign or without a zero point \rightarrow
- **Sensitivity at the LHC:**
 - LHCb: ~ 4400 decays/year, yielding $\Delta \hat{s}_0 = 0.06$ after one year.
 - ATLAS will collect about 1000 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays per year.

- **Other $b \rightarrow s \mu^+ \mu^-$ decays under study:** $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$, $B_s^0 \rightarrow \phi \mu^+ \mu^-$...

- **Current B-factory data:** inclusive $b \rightarrow s \ell^+ \ell^-$ BRs and the integrated asymmetries $\int A_{FB}$ in accordance with SM, but still large uncertainties.
Conclusions and Outlook (I)

• Tremendous progress in flavour physics & CPV during the recent years:

 Fruitful interplay between theory and experiment

 – $e^+e^- B$ factories: have already produced $\sum \mathcal{O}(10^9) \ B\bar{B}$ pairs;
 – Tevatron: has recently succeeded in observing B_s^0–\bar{B}_s^0 mixing.

• Status in November 2006:

 – The data agree globally with the Kobayashi–Maskawa picture!
 – But we have also hints for discrepancies: \rightarrow first signals of NP??

• New perspectives for B-decay studies @ LHC \approx autumn 2007:

 – Large statistics and full exploitation of the B_s physics potential, thereby
 complementing the physics programme of the $e^+e^- B$ factories.
 – Precision determinations of γ: \rightarrow key ingredients for NP searches!
 – Powerful studies of rare decays: $B_{s,d} \rightarrow \mu^+\mu^-$, ...

 \rightarrow much more stringent CKM consistency tests!
Conclusions and Outlook (II)

Flavour physics & CP violation in direct context with LHC

- **Main goals of the ATLAS and CMS experiments:** [→ lecture by A. Höcker]
 - Exploration of the mechanism of EW symmetry breaking: Higgs!?
 - Production and observation of *new* particles ...
 - Then back to questions of dark matter, baryon asymmetry ...

 ⊕ complementary and further studies at ILC/CLIC

- **Synergy with the flavour sector:**

 \[B \oplus K, D, \text{top physics \& lepton/neutrino sector} \]

 - If discovery of new particles, which kind of new physics?
 - Insights into the corresponding new flavour structures and possible new sources of CP violation through studies of flavour processes.
 - Sensitivity on very high energy scales of new physics through precision measurements, also if NP particles cannot be produced at the LHC ...

\(^5\) Topic of CERN Workshop: http://flavlhfcern.ch/flavlhfc/