CMS Trigger System

Ijaz Ahmed
National Centre for Physics, Islamabad
Cross-Sections and Rates

- Formidable task: Trigger Rejection 4×10^5
- Bunch crossing rate 40MHz \rightarrow permanent storage rate $O(10^2)$Hz

Cross sections for different processes vary by many orders of magnitude:

- inelastic: 10^9 Hz
- $W \rightarrow \ell v$: 100 Hz
- tt: 10 Hz
- Higgs (100 GeV): 0.1 Hz
- Higgs (600 GeV): 0.01 Hz

Required selectivity:

$1 : 10^{10 - 11}$

Physics, 12-30 October 2009
Principle of Trigger

Event accepted?
\[T(\ldots) \]

Successive steps

Depends on

- Event type
- Properties of the measured trigger objects

Since the detector data are not promptly available and the function is highly complex, \(T(\ldots) \) is evaluated by successive approximations.

Trigger objects (candidates):
- e, g, m, hadronic jets, t-Jets,
- missing energy, total energy

Trigger conditions: according to physics and technical priorities

First School on LHC Physics, 12-30 October 2009
Trigger Levels in CMS

Level-1 Trigger
- Only calorimeters and muon system involved
- Reason: no complex pattern recognition as in tracker required (appr. 1000 tracks at 1034 cm-2s-1 luminosity), lower data volume
- Trigger is based on:
 - Cluster search in the calorimeters
 - Track search in muon system
- Latency: 3.2 μs
- Input rate: 40 MHz
- Output rate: up to 100 kHz
- Custom designed electronics system

High Level Trigger (several steps)
- More precise information from calorimeters, muon system, pixel detector and tracker
- Threshold, topology, mass, … criteria possible as well as matching with other detectors
- Latency: between 10 ms and 1 s
- Input rate: up to 100 kHz
- Output (data acquisition) rate: approx. 100 Hz
- Industrial processors and switching network

First School on LHC Physics, 12-30 October 2009
Level-1 Trigger Dataflow

Calorimeter Trigger
- Regional Calorimeter Trigger
- Global Calorimeter Trigger

Muon Trigger
- RPC
- CSC
- DT
 - Local CSC Trigger
 - Local DT Trigger
 - DT Track Finder
 - CSC Track Finder

Global Muon Trigger

Global Trigger
- 4+4 μ
- 4 μ
- 4 μ

Global Muon Trigger
- e, J, E_T, H_T, E_T miss

40 MHz pipeline, latency < 3.2 μs

First School on LHC Physics, 12-30 October 2009
L1 Muon Trigger Overview

- **DT hits**: $|\eta| < 1.2$
- **CSC hits**: $0.8 < |\eta| < 2.4$
- **RPC hits**: $|\eta| < 2.1$

1. **Local trigger**
 - **Barrel Track Finder**
 - ≤ 4 muon candidates (p_T, η, ϕ, quality)
 - **Endcap Track Finder**
 - ≤ 4 muon candidates (p_T, η, ϕ, quality)

2. **Regional trigger**
 - ≤ 4 barrel + ≤ 4 endcap muon candidates (p_T, η, ϕ, quality)

3. **Global Muon Trigger**
 - ≤ 4 muons (p_T, η, ϕ, quality)

First School on LHC Physics, 12-30 October 2009
RPC Trigger: Idea

B Filed map in CMS
RPC Trigger: Idea

RPC-Trigger is based on strip hits matched to precalculated patterns according to p_T and charge.

For improved noise reduction algorithm requiring coincidence of at least 4/6 hit planes has been designed. Number of patterns is high. FPGA solution (previously ASICs) seems feasible, but currently expensive. Solutions to reduce number of patterns under study.
RPC Trigger: Role of Strips

- Track Bending and Strip Width

\[r [m], B [T], p_t [GeV] \]
\[r = p_t / 0.3 B \]
\[\sin \alpha = R/2 / r \]
\[\sin \alpha = 0.3 B R / 2 p_t \]

For CMS:
\[B=4T, R=3m \]
\[\alpha \approx 2 \text{ GeV} / p_t \]
\[\sigma_1/p = \sigma_\alpha / 2 \]
\[\sigma_\alpha = \Delta x / \sqrt{2 \Delta R} \]

For RPCs at MS1 and MS2:
\[\Delta x = 2.4 \text{ cm} \text{ (i.e. } \Delta \phi = 1/3^\circ) \]
\[\Delta R = 80 \text{ cm} \]
\[\sigma_1/p = 1 / 100 \text{ GeV} \]
RPC Trigger: Role of Strips

- Track Bending and strip Length
- Time of flight and signal propagation
- Random coincidence and background hits

First School on LHC Physics, 12-30 October 2009
Level 1 Calorimeter Trigger

Major Elements
- Trigger Primitive Generator (TPG)
- Regional Calorimeter Trigger (RCT)
- Global Calorimeter Trigger (GCT)

0.3 η x 0.3 ϕ
L1 Electron/Photon Trigger

Issue is rejection of huge jet background

- Electromagnetic trigger based on 3x3 trigger towers
 - Each tower is 5x5 crystals in ECAL (barrel; varies in end-cap)
 - Each tower is single readout tower in HCAL

Non-isolated
- FG ECAL crystal energy profile
- HCAL to ECAL energy comparison \(H/E < 5\% \)

Isolation
- FG+HAC
- At least one quiet corner

First School on LHC Physics, 12-30 October 2009
Typical Level-1 Rates and Efficiencies

- Single isolated e/γ rate at 25 GeV threshold: 1.9 kHz
- 95% efficiency at 31 GeV

Low Luminosity e/γ trigger rates

Single e/γ Efficiency

First School on LHC Physics, 12-30 October 2009
L1 Jet and \(\tau \) Triggers

Issues are jet energy resolution and tau identification

Sliding window:
- granularity is 4x4 towers = trigger region
- jet \(E_T \) summed in 3x3 regions \(\Delta \eta, \Delta \phi = 1.04 \)

“\(\tau \)-like” shapes identified for \(\tau \) trigger

- Single, double, triple and quad thresholds possible
- Possible also to cut on jet multiplicities
- Also \(E_T^{\text{miss}} \), \(\Sigma E_T \) and \(\Sigma E_T(\text{jets}) \) triggers
Typical Level-1 Jet Rates and Efficiencies

- Single jet rate at 120 GeV threshold: 2.2 kHz, 95% efficiency at 143 GeV
- Dijet rate at 90 GeV: 2.1 kHz 95% efficiency at 113 GeV
- Single t-jet rate at 80 GeV threshold: 6.1 kHz
Muons at LHC

Issue is p_T measurement of real muons

![Graph showing rate vs. p_T threshold for different decay modes with $|\eta| < 2.1$ and $L = 10^{34}$ cm$^{-2}$s$^{-1}$]
Drift Tube Trigger

- Bunch and track identifier
- Tracker Correlator
- Trigger Server
- Drift Tube Track Finder
CSC Muon Trigger

- CSC Track Finder (TF)
- CSC Local Charged Tracks (LCT)
- CSC Anode Trigger Electronics (ATE)
- CSC Cathode Trigger Electronics (CTE)
- CSC Track Finder Electronics (TFE)
- CSC Muon Sorter (MS)
Curves show individual DT, RPC & CSC & 3 Global Muon Trigger Combinations:
OR, AND, & optimized selection based on track quality & p_T information
Single muon trigger rate is 8.1 kHz for a threshold of 25 GeV (90% efficient)
Dimuon muon trigger rate is 2.8 kHz for thresholds of 8, 5 GeV (90% efficient)
Logic combinations of trigger objects sent by the Global Calorimeter and the Global Muon Trigger

- Best 4 isolated electrons/photons: E_T, η, ϕ
- Best 4 non-isolated electrons/photons: E_T, η, ϕ
- Best 4 jets in forward regions: E_T, η, ϕ
- Best 4 jets in central region: E_T, η, ϕ
- Best 4 t-Jets: E_T, η, ϕ
- Total E_T: $\sum E_T$
- Total E_T of all jets above threshold: H_T
- Missing E_T: $E_T^{\text{missing}}, f(E_T^{\text{missing}})$
- 12 jet multiplicities: N_{jets} (different E_T thresholds and h-regions)
- Best 4 muons: p_T, charge, f, h, quality, MIP, isolation

- Thresholds: (p_T, E_T, N_{jets})
- Optional topological and other conditions: (geometry, isolation, charge, quality)
- 128 algorithms running in parallel
Level-1 Trigger table \((10^{34})\)

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Threshold (GeV)</th>
<th>Rate (kHz)</th>
<th>Cumulative Rate (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated e/g</td>
<td>34</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Di-e/g</td>
<td>19</td>
<td>3.3</td>
<td>9.4</td>
</tr>
<tr>
<td>Isolated muon</td>
<td>20</td>
<td>6.2</td>
<td>15.6</td>
</tr>
<tr>
<td>Di-muon</td>
<td>5</td>
<td>1.7</td>
<td>17.3</td>
</tr>
<tr>
<td>Single tau-jet</td>
<td>101</td>
<td>5.3</td>
<td>22.6</td>
</tr>
<tr>
<td>Di-tau-jet</td>
<td>67</td>
<td>3.6</td>
<td>25.0</td>
</tr>
<tr>
<td>1-jet, 3-jet, 4-jet</td>
<td>250, 110, 95</td>
<td>3.0</td>
<td>26.7</td>
</tr>
<tr>
<td>Jet(\star)E_{T}^{miss}\</td>
<td>113*70</td>
<td>4.5</td>
<td>30.4</td>
</tr>
<tr>
<td>Electron\star jet</td>
<td>25*52</td>
<td>1.3</td>
<td>31.7</td>
</tr>
<tr>
<td>Muon\star jet</td>
<td>15*40</td>
<td>0.8</td>
<td>32.5</td>
</tr>
<tr>
<td>Min-bias</td>
<td></td>
<td>1.0</td>
<td>33.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>33.5</td>
</tr>
</tbody>
</table>
High-Level Trigger

• Runs on large CPU farm
• Code as close as possible to offline reconstruction
• Selection must meet CMS physics goals
 – Output rate to permanent storage limited to $O(10^2)$Hz
• Reconstruction on demand
 – Reject as soon as possible
 – Trigger “Levels”:
 • Level-2: use calorimeter and muon detectors
 • Level-2.5: also use tracker pixel detectors
 • Level-3: includes use of full information, including tracker
 – “Regional reconstruction”: e.g. tracks in a given road or region
High Level trigger Goals

- Validate Level-1 decision
- Refine E_T/p_T thresholds
- Refine measurement of position and other parameters
- Reject backgrounds
- Perform first physics selection
HLT selection: μ, τ, jets and E_T^{miss}

- **Muons**
 - Successive refinement of momentum measurement; + isolation
 - Level-2: reconstructed in muon system; must have valid extrapolation to collision vertex; + calorimeter isolation
 - Level-3: reconstructed in inner tracker; + tracker isolation

- **τ-leptons**
 - Level-2: calorimetric reconstruction and isolation
 - Level-3: tracker isolation.

- **Jets and E_T^{miss}**
 - Jet reconstruction with iterative cone algorithm
 - E_T^{miss} reconstruction (vector sum of towers above threshold).
HLT selection: electrons and photons

- Issue is electron reconstruction and rejection
 - Higher E_T threshold on photons

- **Electron reconstruction**
 - key is recovery of radiated energy

- **Electron rejection**
 - key tool is pixel detector

First School on LHC Physics, 12-30 October 2009
HLT Summary: 2×10^{33} cm$^{-2}$s$^{-1}$

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Threshold (GeV)</th>
<th>Rate (Hz)</th>
<th>Cuml. rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive electron</td>
<td>29</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Di-electron</td>
<td>17</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>Inclusive photon</td>
<td>80</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>Di-photon</td>
<td>40, 25</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>Inclusive muon</td>
<td>19</td>
<td>25</td>
<td>68</td>
</tr>
<tr>
<td>Di-muon</td>
<td>7</td>
<td>4</td>
<td>72</td>
</tr>
<tr>
<td>Inclusive tau-jet</td>
<td>86</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Di-tau-jet</td>
<td>59</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>1-jet * E_{T}^{miss}</td>
<td>180 * 123</td>
<td>5</td>
<td>81</td>
</tr>
<tr>
<td>1-jet OR 3-jet OR 4-jet</td>
<td>657, 247, 113</td>
<td>9</td>
<td>89</td>
</tr>
<tr>
<td>Electron * jet</td>
<td>19 * 45</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>Inclusive b-jet</td>
<td>237</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>Calibration etc</td>
<td></td>
<td>10</td>
<td>105</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

First School on LHC Physics, 12-30 October 2009
HLT performance — signal efficiency

- **With previous selection cuts**

<table>
<thead>
<tr>
<th>Channel</th>
<th>Efficiency (for fiducial objects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(115 GeV)\rightarrowgg</td>
<td>77%</td>
</tr>
<tr>
<td>H(160 GeV)\rightarrowWW* \rightarrow2m</td>
<td>92%</td>
</tr>
<tr>
<td>H(150 GeV)\rightarrowZZ\rightarrow4m</td>
<td>98%</td>
</tr>
<tr>
<td>A/H(200 GeV)\rightarrow2t</td>
<td>45%</td>
</tr>
<tr>
<td>SUSY (\sim0.5 TeV sparticles)</td>
<td>\sim60%</td>
</tr>
<tr>
<td>With R_p-violation</td>
<td>\sim20%</td>
</tr>
<tr>
<td>W\rightarrowen</td>
<td>67% (fid: 60%)</td>
</tr>
<tr>
<td>W\rightarrowmn</td>
<td>69% (fid: 50%)</td>
</tr>
<tr>
<td>Top\rightarrowm X</td>
<td>72%</td>
</tr>
</tbody>
</table>
Summary

The CMS Trigger System is close to become reality after a long period of simulation studies, hardware prototyping and system construction.

The CMS trigger design meets the challenging LHC requirements:

- Large rate reduction
- High efficiency for signal events
- Wide inclusive selection (open to the unexpected)
- Huge flexibility allowing future adaptation to the unknown

CMS Trigger system reduces the rate by an overall factor of roughly 10^6 while maintaining good efficiency.

• **Level-1:**
 - First factor of 1000
 - Hadronic \(\tau\) trigger implemented
 - Sliding window jet triggers
 - Isolated and non-isolated lepton triggers (without central tracking)
 - 128 trigger lines available

• **HLT:**
 - Second factor of 1000
 - Access to full event information
 - Partial reconstruction based on the calorimeter and muon systems initially (verify and improve Level-1 decision), followed by pixel + tracker information for final rejection
Conventional Concept with 3 Steps

- **LEVEL-1 Trigger 40 MHz**
 - Hardwired processors (ASIC, FPGA)
 - Pipeline logic systems

- **SECOND LEVEL TRIGGER 100 kHz**
 - SPECIALIZED processors

- **HIGH LEVEL TRIGGERS 1kHz**
 - Commercial processor farms

Processing time (s):
- 1 μs
- 1 ms
- 0.1 - 1 s

Rate (Hz):
- 10^8
- 10^6
- 10^4
- 10^2
- 10^0
- 10^{-2}
- 10^{-4}
- 25 ns
Local / Regional Electron/Photon Trigger

Trigger primitive generator (local)
Flag max of 4 combinations ("Fine Grain Bit")

Regional calorimeter trigger
E_T cut

Longitudinal cut hadr./electromagn. E_T

Hadronic and electromagnetic isolation

Electron / photon on LHC Physics, 12-30 October 2009
Level-1 Trigger

- Information from Calorimeters and Muon detectors
 - Electron/photon triggers
 - Jet and missing E_T triggers
 - Muon triggers

- Backgrounds are huge
 - Sophisticated trigger algorithms
 - Steep functions of thresholds

- Synchronous and pipelined
 - Bunch crossing time = 25 ns
 - Time needed for decision (+its propagation) $\approx 3 \mu s$

- Highly complex
 - Trigger primitives: ~5000 electronics boards of 7 types
 - Regional/Global: 45 crates, 630 boards, 32 board types

- Large flexibility
 - Large number of electronics programmable parameters
 - Most algorithms implemented in re-programmable FPGAs