How to Measure Top Quark Mass with CMS Detector

Ijaz Ahmed
Comsats Institute of Information Technology,
Islamabad
Outlines

- High Pt top basic idea
- Methods for jets selection
- Top quark mass reconstruction from jets
- Jets clustering and clusters method for $M_{\text{top}}^{\text{clus}}$
- Underlying Event (UE$_{\text{clus}}$) estimation and subtraction
- Systematics errors
- Summary
Large Hadron Collider (LHC) Experiment

Event Rate

\[R = \sigma \times L = 80 \text{mb} \times 10^{34} \text{cm}^{-2} \text{s}^{-1} \approx 10^9 / \text{s} \]

\[L = \frac{\gamma f k_b N_p}{4 \pi \varepsilon_n \beta} F = 10^{34} \text{cm}^{-2} \text{s}^{-1} \]

- Large distance collisions
 - Soft scattering
- Short distance collisions
 - Hard scattering (rare events)

Integrated luminosity = 10fb\(^{-1}\) = 10\(^{33}\) s\(^{-1}\) cm\(^{-2}\)
The CMS Detector

22 m long & 15 m in diameter

More than 1 Million Geometrical volumes

International Scientific Spring NCP, 01-06 March 2010
Top quark properties and Decays

- Heaviest particle (spin \(\frac{1}{2}\), charge 2/3)
- Origin of mass, EWSB
- Short life time
- No bound state

\[\sigma(t\bar{t}) \approx 830 \pm 100 \text{ pb}^{-1} \]

- 90% lepton + jets
- 10% muons, b-jets, light jets (u,d,c,s), missing E_T(neutrinos)

\[~44\% \]

\[~29\% \]

\[~4.9\% \]
Boosted Top Quark Analysis

- Highly boosted top quarks: Decay back-to-back
- Higher top boost: Small opening angle of W-boson and b-quark
- High Pt top quarks: Large probability of jets overlapping in space.
- Invariant mass of the objects (jets/clusters) in larger cone around the top quark flight direction: Correlation with the real top quark mass.
- Top quark needs to have a larger boost: \(Pt > 200 \text{ GeV} \).

- Reduces the combinatorial background.
- The systematic effects due to jet energy calibration and gluon effects
- Potential to reduce the systematic errors
Kinematical variables

- Invariant mass
 \[m^2 = p^\mu p_\mu = E^2 - p^2 \]
- Transverse momentum
 \[p_T^2 = p_x^2 + p_y^2 \]
- Transverse mass
 \[m_T^2 = m^2 + p_T^2 = E^2 - p_z^2 \]
- Transverse energy
 \[E_T = E \sin \vartheta \]
- Pseudo-rapidity
 \[\eta = - \ln \left(\frac{\tan \vartheta}{2} \right) \]
- Rapidity
 \[y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \ln \left(\frac{E + p_z}{m_T} \right) \]
- Jet cone radius
 \[\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2} \]
- Missing Transverse Energy
 \[E_T^{\text{miss}} \]
Event Simulation: Tools and Methods

1. Event generation (PYTHIA, TOPREX, CMKIN)
2. Simulation of the interaction of the generated particles with the detector (OSCAR, FAMOS, CMSSW : GEANT4)
3. Simulation of digitized phase (FAMOS, CMSSW, ORCA)
 - Level-1 trigger (100 KHz)
 - High Level Trigger (100 Hz)
4. Local and global event reconstruction (FAMOS, CMSSW, ORCA)
5. Physics Analysis tools (PAW, ROOT)
Even Selection at Partonic Level

\[
t \bar{t} \rightarrow bW^+bW^- \rightarrow b\bar{q}q\mu\nu
\]

- \(P_t^{\text{top}} > 200 \text{ GeV}, |\eta| < 3.0 \)
- \(P_t^{\text{anti-top}} > 200 \text{ GeV}, |\eta| < 3.0 \)
- \(P_t^\mu > 30 \text{ GeV}, |\eta| < 2.0 \)
- \(P_t^q > 20 \text{ GeV}, |\eta| < 2.5 \)

Fast simulation based samples
- 165 Top mass point = 20K events
- 175 Top mass point = 50K events
- 185 Top mass point = 20K events

Pile-up events are included

Cross-section approximately 1% of the total tT cross-section

<table>
<thead>
<tr>
<th>No. of events With pile-up</th>
<th>Int. luminosity fb(^{-1})</th>
<th>X-section pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}t \rightarrow bW^+bW^- \rightarrow b\bar{q}qbl\nu)</td>
<td>49535</td>
<td>7.23</td>
</tr>
</tbody>
</table>
Distributions at Decay Vertex (1)

- P_t^{top}
 - Mean: 285.3 GeV
 - RMS: 80.27 GeV

- MC η^{top}
 - Mean: -0.039557
 - RMS: 1.469

- $\Delta R(q,q\bar{q})$
 - Mean: 1.38
 - RMS: 0.7437

- P_t^W
 - Mean: 169.6 GeV
 - RMS: 80.12 GeV

International Scientific Spring NCP, 01-06 March 2010
Distributions at Decay Vertex (2)

\(\Delta R(\text{top,b-par}) \)

\(\Delta R(\text{top,W}) \)

\(\Delta R(\text{top, min W-quarks}) \)

\(\Delta R(\text{top, max W-quarks}) \)
Reconstruction

- MET -> Missing Transverse Energy
- MET > 30 GeV
- At least 1 iso. muon, $P_T > 20$ GeV, $|\eta| < 2.0$

leptonic W reco mass

International Scientific Spring NCP, 01-06 March 2010
Muon reconstruction and isolation

Isolation Criteria

\[\sum \frac{P_{T_{\text{trks}}}}{P_{T_{\mu}}} < 5\% \]
\[(\Delta R = 0.01 - 0.2) \]
Efficiency > 92%

Most likely muon tracks
Leading light jets $P_t^{\text{jets}} > 20$ GeV

Leading b-jets $P_t^{b\text{-jets}} > 20$ GeV

combined b-tag discriminator

combined b-tag disc. > 0

(60% b-tag efficiency based on the secondary vertex, a vertex which is displaced from the primary vertex.)
Jet-Parton Matching

- 2 light jets corresponds to 2 quarks from W boson
- Four possible jet combinations
- Take best combination which gives correctly matching

Correctly matched if $\Delta R < 0.4$

$\Delta R(j_1,q_1)$
$\Delta R(j_1,q_2)$
$\Delta R(j_2,q_1)$
$\Delta R(j_2,q_2)$
$I_1 = \text{Max (}\Delta R(j_1,q_1), \Delta R(j_1,q_2))$
$I_2 = \text{Max (}\Delta R(j_2,q_1), \Delta R(j_2,q_2))$
$\text{Min}(I_1, I_2) < 0.4$
Various Approaches for Jets Selection

Steps to measure top quark direction

- Leading jets ≥ 2 b-tagged jets, ≥ 2 non b-tagged jets
- Exactly 4 jets, =2 b-tagged jets, = 2 non b-tagged jets
- > 2 leading b-jets, 2 light jets with m_{jj} closest to W mass
Top Quark Selection: Leading Jets Topology

1 quark matched = 42.7%
2 quarks matched = 18.17%

<table>
<thead>
<tr>
<th>Kinematical cuts</th>
<th>Selection efficiency %</th>
<th>No. of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before selection</td>
<td>100</td>
<td>49535</td>
</tr>
<tr>
<td>no of iso. muons</td>
<td>93.6</td>
<td>46370</td>
</tr>
<tr>
<td>≥ 1 iso muon $P_T > 30$ GeV</td>
<td>92.7</td>
<td>45920</td>
</tr>
<tr>
<td>≥ 1 reco light jets $P_T > 20$ GeV</td>
<td>91.1</td>
<td>45117</td>
</tr>
<tr>
<td>≥ 2 reco light jets $</td>
<td>\eta</td>
<td>< 2.5$</td>
</tr>
<tr>
<td>≥ 1 b-jet $P_T > 20$ GeV</td>
<td>55.6</td>
<td>27543</td>
</tr>
<tr>
<td>≥ 2 b-jets $</td>
<td>\eta</td>
<td>< 2.5$</td>
</tr>
<tr>
<td>$</td>
<td>m_{jj} - m_W^{nom}</td>
<td>< 20$ GeV</td>
</tr>
</tbody>
</table>

$m_W^{nom} = 65.24$ (gaussian fitted correctly jet-parton matching)

b-jet with biggest angle wr.t muon called Hadronic b-jets
Top Quark Selection: Four Jets Topology

Hadronic top selection
- Four highest Pt jets selection
- b-jets identification with b-tagging
- Two light jets invariant mass reconstruction
- Hadronic b-jet requires
 - for away from isolated muon with maximum distance 0.4
 - or closests to light jets

1 quark matched = 20.98%
2 quarks matched = 43.26%

<table>
<thead>
<tr>
<th>Kinematical cuts</th>
<th>Selection efficiency %</th>
<th>No. of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before selection</td>
<td>100</td>
<td>49535</td>
</tr>
<tr>
<td>no of iso muons</td>
<td>93.6</td>
<td>46370</td>
</tr>
<tr>
<td>≥ 1 iso muon P_t > 30 GeV</td>
<td>92.7</td>
<td>45916</td>
</tr>
<tr>
<td>≥ 1 reco light jets P_t > 20 GeV</td>
<td>92.7</td>
<td>45915</td>
</tr>
<tr>
<td>Exectly 4 jets</td>
<td>η</td>
<td>< 2.5</td>
</tr>
<tr>
<td>Exectly 2 light jets</td>
<td>8.0</td>
<td>3941</td>
</tr>
<tr>
<td>Exectly 2 b-jets</td>
<td>8.0</td>
<td>3941</td>
</tr>
<tr>
<td></td>
<td>mjj − m_W</td>
<td>< 20 GeV</td>
</tr>
</tbody>
</table>

- Four highest Pt jets selection
- b-jets identification with b-tagging
- Two light jets invariant mass reconstruction
- Hadronic b-jet requires
 - for away from isolated muon with maximum distance 0.4
 - or closests to light jets
Top Quark Selection: J\(\rightarrow\)W

1 quark matched = 20.76%
2 quarks matched = 40.6%

<table>
<thead>
<tr>
<th>Kinematical cuts</th>
<th>Selection efficiency %</th>
<th>No. of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before selection</td>
<td>100</td>
<td>49535</td>
</tr>
<tr>
<td>no of iso muons, (P_t > 30 \text{ GeV},</td>
<td>\eta</td>
<td>< 2.0)</td>
</tr>
<tr>
<td>2 jj (\rightarrow)W, (P_t > 20 \text{ GeV},</td>
<td>\eta</td>
<td>< 2.5)</td>
</tr>
<tr>
<td>(\geq 2) b-jets (P_t > 20 \text{ GeV},</td>
<td>\eta</td>
<td>< 2.5)</td>
</tr>
<tr>
<td>(</td>
<td>m_{jj} - m_W</td>
<td>< 20 \text{ GeV})</td>
</tr>
</tbody>
</table>

Histograms:
- Number of events vs recoil top mass (true) and wrong.
- Distributions of \(W_i\) and \(W_j\) with and without event selection.
W Mass from Three Approaches

Nominal mass—fitted mass ~ 65 GeV

Same m_W^{nominal} used in all selections (JPM)
Comments on M_{jjb}

- Study based on shape of distributions for top direction determination.
- Explored three types of selection criteria for hadronic top mass reconstruction
 - Four jets selection results low efficiency with higher W purity
 - Jets with invariant mass close to W have higher efficiency with intermediate purity of W
 - Leading jets selection gives sharp and narrow dist. shape with less long tail behaviour and reasonable selection efficiency
Top Quark Selection: Leading Jets Topology

- First peak from the wrong jet combination
 - Exchanging the leptonic b-jet into hadronic b-jet
 - One of the 4 leading jets could be coming from the gluon radiation
 - Soft QCD events

- Second peak corresponds to the correct combinations
 - At preselection level we demand high Pt jets

Mean 0.9274
Meany 146.8
RMS 0.224
RMSy 77.97

Top P_T (GeV/c)

- Right
- Wrong

Efficiency ~ 2%

Entries 4306
Mean 144
RMS 78.17

Entries 945
Mean 157
RMS 51.66
Calibrated Top Quark Mass

Peaks are shifted towards the nominal Top mass
Invariant mass of all calorimeters clusters in $\Delta \eta \times \Delta \phi$ around top direction

Calorimetric Clusters Reconstruction Method

$$m_{\text{clusters}}(\Delta R) = (E^2 - P^2) = \left(\sum_{i=0.7} E_i \right)^2 - \left(\sum_{i=0.7} P_i \right)^2$$

- E_i represents total energy of the ith cluster
- nDR runs over all clusters within selected cone size
- P_i its 3-momenta vector
- Known: E, η, φ about clusters
- Assumptions: considering particles to be mass-less

$m \approx 0 \Rightarrow E^2 \equiv P^2$

$$Px = E \sin \vartheta \cos \phi$$

$$Py = E \sin \vartheta \sin \phi$$

$$Pz = E \cos \vartheta$$
Reco clusters pseudo-rapidity

$E^{Th}_{\text{clus}} > 1 \text{ MeV}$

Calorimeters identifications

\[R = \sqrt{X^2 + Y^2} \]

- ECAL ($|Z|<350 \text{ cm, } R < 170 \text{ cm}$)
- HCAL ($|Z|<350 \text{ cm, } R < 300 \text{ cm}$)

\[E_{\text{clus}}^L = 2 \text{ GeV} \]
E_T^{clus} Deposition

![Histograms showing E_T^{clus} deposition for different layers and pseudorapidity regions.](image-url)
M_{top}^clus Determination

Clusters lie close to the top quark flight direction

Reduce intrinsic complexities of effects due to energy leakage outside a narrow cone

Reduce system errors arising due to jet calibration

Jets decay back-back
It is not only minimum bias event. The underlying event is everything except the two outgoing hard scattered jets. In a hard scattering process, the underlying event has a hard component (initial+final state radiation and particles from the outgoing hard scattered partons) and a soft component (beam-beam remnants).

Jet Isolation

| $|\eta| <$ 0.7 | $|\eta| <$ 1.4 | $|\eta| <$ 2.1 | $|\eta| <$ 3.0 | $|\eta| >$ 3.0 | $|\eta| >$ 5.0 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **$\Delta R = 0.7$** | 626.89 | 509.19 | 445.77 | 363.00 | 236.77 | 326.78 |
| | 38 | 88 | 134 | 229 | 182 | 352 |
| **$\Delta R = 0.8$** | 623.07 | 503.17 | 439.69 | 356.43 | 236.76 | 321.39 |
| | 33 | 80 | 125 | 218 | 181 | 33 |
| **$\Delta R = 0.9$** | 618.47 | 496.66 | 433.11 | 349.36 | 236.69 | 315.67 |
| | 29 | 73 | 116 | 180 | 330 | 208 |
| **$\Delta R = 1.1$** | 614.85 | 485.24 | 420.82 | 335.58 | 236.35 | 304.62 |
| | 22 | 22 | 22 | 22 | 22 | 22 |
| **$\Delta R = 1.5$** | 599.83 | 459.49 | 394.11 | 306.64 | 237.03 | 283.05 |
| | 8 | 28 | 66 | 136 | 169 | 53 |

Electromagnetic Calorimeter

| $|\eta| <$ 0.7 | $|\eta| <$ 1.4 | $|\eta| <$ 2.1 | $|\eta| <$ 3.0 | $|\eta| >$ 3.0 | $|\eta| >$ 5.0 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **$\Delta R = 0.7$** | 201.24 | 173.59 | 102.26 | 708 | 102.26 | 708 |
| | 76 | 81 | 708 | 708 | 309 | 1383 |
| **$\Delta R = 0.8$** | 199.50 | 172.54 | 100.71 | 100.71 | 53.99 | 78.73 |
| | 66 | 66 | 66 | 66 | 66 | 66 |
| **$\Delta R = 0.9$** | 198.50 | 171.20 | 99.28 | 99.28 | 54.01 | 76.23 |
| | 57 | 146 | 630 | 630 | 303 | 1285 |
| **$\Delta R = 1.1$** | 197.46 | 168.08 | 96.26 | 96.26 | 54.17 | 73.79 |
| | 41 | 112 | 546 | 546 | 283 | 1175 |
| **$\Delta R = 1.5$** | 182.09 | 164.27 | 91.25 | 90.88 | 54.77 | 86.68 |
| | 16 | 55 | 372 | 922 | 266 | 922 |

Hadronic Calorimeter

It is not only minimum bias event. The underlying event is everything except the two outgoing hard scattered jets. In a hard scattering process, the underlying event has a hard component (initial+final state radiation and particles from the outgoing hard scattered partons) and a soft component (beam-beam remnants).
A correlation with a slope about 0.7866 is observed, which implies that error of 0.9 GeV in the mean of peak translates to statistical uncertainty of $0.9/0.786 = 1.1456$ GeV/c in M_{jjb} and $1.1 - 1.6$ GeV/c in M_{clus}^{top}.

50K events corresponds to 7.2 fb$^{-1}$, statistical uncertainty about $\delta m = 1 - 1.5$ GeV on top mass.
<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Δm_{top}(GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-calibration</td>
<td>0.9</td>
</tr>
<tr>
<td>Electronic noise</td>
<td>1.2</td>
</tr>
<tr>
<td>ISR on/off</td>
<td>0.14</td>
</tr>
<tr>
<td>FSR on/off</td>
<td>0.07</td>
</tr>
<tr>
<td>B-quark fragmentation</td>
<td>0.3</td>
</tr>
<tr>
<td>UE estimate (+-10%)</td>
<td>1.34</td>
</tr>
<tr>
<td>Cluster mis calibration: +/-1(5) %</td>
<td>0.7(1.3)</td>
</tr>
<tr>
<td>Calorimeter: e/h=1.25 (1.63)</td>
<td>0.8(0.3)</td>
</tr>
</tbody>
</table>
An alternate method for top mass reconstruction in CMS is presented, which strongly depends on CMS Calorimeters.

A new method for Underlying Event (UE) estimation, subtraction and calibration is developed.

This analysis is performed with both Full and Fast Simulations techniques.

Statistical error on top mass $M_{jjb}(1-1.5 \text{ GeV})$ and $1.1 -- 1.6 \text{ GeV/c}$ in M_{clus}^{top} is estimated.